超伝導体を用いた放射線検出器

理化学研究所 延與放射線研究室 佐藤広海

共同研究者

理研 三島賢二、大野雅史、有吉誠一郎、滝澤慶之、大谷知行 KEK 清水裕彦 大阪電通大 倉門雅彦、志岐成友 埼玉大 高田進、明連広昭、田井野徹

超伝導トンネル接合素子(STJ) の開発と評価を中心に

STJの構造

超伝導膜 / <mark>絶縁膜</mark> / 超伝導膜 という構造の、 ジョセフソン素子の一種

	Z	転移温 度(K)	ギャップエネ ルギー(meV)	
AI	13	1.20	0.34	
Nb	41	9.23	3.1	
Та	73	4.48	1.4	

STJの作製

STJ作製専用 プロセス装置 群を所有

放射線検出器としての動作原理

放射線からのエネルギー の付与

超伝導体中のクーパー対 を解離

動作条件

温度:転移温度の およそ1/10

ST

磁場:~100G

発生した準粒子(電子)がト ンネル効果でもう一方の超 伝導体電極へ

基板吸収型

信号

STJの特徴

Charge carrier: クーパー対の解離によって発生した準粒子(電子)

解離エネルギー (1.7△) = 2.6 meV @ Nb

FWHM = $2.35\sqrt{(1.7\Delta)} F E$ = 4.3eV @ 5.9 keV Fano factor (0.22) Energy

電極構造自体が放射線を検出:不感層がない

──> 低エネルギー粒子のエネルギー測定が可能

エネルギー分解能比較

ST.

直接吸収型による検出

素子構造の工夫

作成している素子の構造

Nb/Al-AlOx/Nb

エネルギーギャップ Nb: 3.1meV Al: 0.34meV

Nbよりもエネルギーギャップの小さい Alをトンネル障壁の上下に成膜する ことで、準粒子を障壁近傍に"トラップ" する。

- ➡ 10倍程度の信号の増幅
- 🔿 S/N比の向上

素子性能評価実験

⁵⁵Fe X線源使用

Nb/Al/AlOx/Al/Nb

5.9 keV X線のスペクトル

ダブルピーク

上部·下部で吸収さ れた信号の両方が ピークをつくるため、 ひとつのエネルギー に対して2本のピー クが現れる

H.Sato et al., Jpn. J. Appl. Phys. 39 (2000) p5090

ST

(KEK-PF BL-12A)

可視光の検出

フォトダイオードからの可視光をSTJに照射

FWHM=1.5eV@2.64eV (470nm)

S.Shiki et al., Nucl. Instr. Meth. A520 (2004) p530 S.Shiki et al., Publ. Astron. Soc. Japan 56 (2004) L19

まだ分解能を議論するまでには至らな いが、STJの「不感層が無い」という特徴 を活かした、低エネルギー陽子のエネル ギー検出に成功

基板吸収型による検出

高い吸収効率 シングルピーク が実現可能 広い検出領域

直列接合素子を用いた検出

M. Kurakado et al., Proc. SPIE 1743 (1992) 351.

substrate.

 α -particles are absorbed by

Signals from for series arrays are summed.

Full energy peak of α -particles are obtained.

Sapphire substrate-

-Effective area: 8mm x 8mm

288 series x 3 parallel x 4 arrays = 3456 STJs

評価実験のセットアップ

Data acquisition process

ST

エネルギースペクトル

Sum of 4 arrays (Coincident events)

ST

Position dependence of the pulse height

Broaden the peak width

M.Kurakado et al., Nucl. Instr. Meth. A 506 (2003) p134

STI

別のチップデザインの場合

 $\phi 100 \mu m$ -JJ x 40 series x 4 parallel x 4 arrays

Nb	150nm
Al	70nm
AlOx	
Al	70nm
Nb	200nm

Sapphire substrate

ST.

テラヘルツイメージング 配線 ログペリアンテナ(Nb) 696969696969 ***** **STJ** 69696969696969 **** **** 直径 2.2 μm ******** **STJ** 400 µm 高感度 NEP_{STJ} ~ 10^{-(17 ~ 18)} W / Hz

ST

イメージング測定例

STJ検出器1画素を用いて、試料のスキャンにより イメージングを行う

実験のセットアップ

STJを用いた世界初のテラヘルツ 透過画像(SUICAカード)

現在、5画素リニアアレイに着手

エネルギー分解能の向上

素子作製プロセスの最適化

検出エリアの拡大

単素子の面積拡大

配線数には限界あり

超伝導エレクトロニクスとの融合

低温領域にADC、MUXを導入し、多素子読み出しに対応

クライオスタットの技術向上

簡便に長時間運転が可能 無冷媒冷凍機

超伝導ADC回路のテスト

将来のSTJ読み出しに向けて、超伝導回路の動作実験を開始 名古屋大学 藤巻研究室との共同研究

4.2K

ADC (Nagoya Univ.)

8 bit, 50~100MHz clock 8 bit parallel readout

再構成

他のグループの例

ESA-ESTEC

S-Cam 2 STJを用いた、地上天文観測用アレイ

Ta-Al JJ, 40µm角 6x6アレイ

Crab pulsar の観測等に使用 されている

S-Cam 3 12x10 pixels D.D.E. Martin et al., NIM A 520 (2004) 512

LLNL

放射光でのX線吸収分光 (fluorescence-detected XAS)

Ta-Al JJ, 9素子

たんぱく質中のMnの結 合状態の知見

S. Friedrich, NIM A 520 (2004) 621

超伝導転移端温度計(TES)

Transition Edge Sensor : TES

構成:フォトンの吸収体 + 高感度温度計(TES)

フォトン入射時の吸収体の温度上昇を、高感度な温度計(TES)で測定

極低温での物質の格子比熱 :温度の3乗に比例して小さくなる 極低温での物質の電子比熱

:温度に比例して小さくなる

mK程度の温度上昇

超伝導体のTc付近における抵抗値の 急峻な温度依存性を利用

エネルギー分解能

 $\Delta E_{(FWHM)} = 2.36 \sqrt{4kT_c^2 C(1/\alpha)} \sqrt{n/2}$

C:熱容量

:転移の急峻さを表すパラメタ (=d[logR]/d[logT]) n:定数 (=5)

Tc, Cが小さいほど、またが大きいほど良い分解能が実現

信号の時定数

$$\tau_{eff} = \frac{C}{G(1+\alpha/n)}$$
 (数10~数100µs)

G:TESと熱浴の間の熱コンダクタンス

開発状況

低エネルギー陽子検出のためのTESを開発中

コンセプト:大面積、比較的高い転移温度

Au(35nm)/Ti(100nm)/Au(35nm)

SiNメンプレン(500nm)

55Fe 線源からのX線で評価

分解能向上のため、開発続行中

ST

サイズ:500µm

TES:

"普通の"TESのパフォーマンス

5.9keV X線による評価

	$\Delta E(eV)$	(µs)	Thermometer	Tc(mK)	$\operatorname{Rn}(\Omega)$	Absorber
SRON	4.5 (3.9)	100	TiAu	96	0.25	Cu
NIST	4.5	750	MoCu	93	0.017	None/TES
GSFC	6.1	310	MoAu	106	0.010	None/TES
Jyvaskyla	9.2	260	TiAu	150	0.25	Bi
東大	9.4	400	IrAu	110	0.15	None/TES

東大 中沢·高橋研

ST.

まとめ

視光から硬X線までの光子検出、線・陽子等の粒子検出が可能な、STJの開発

STJ単接合[,]直接吸収型

極端紫外線・可視光等、低いエネルギーへの応用が適している

STJ直列接合·基板吸収型

エネルギーの高い光子(硬X線)・重イオンへの応用が適している

現在の開発の中心

·低エネルギー陽子検出器 (STJ, TES) 中性子ベータ崩壊実験へ適用

検出領域の大面積化

·超伝導ADCを用いた波形取得

·25画素テラヘルツイメージングの実現(理研仙台THzグループと)