超伝導体を用いた放射線検出器

理化学研究所 延與放射線研究室 佐藤広海

共同研究者

理研 三島賢二、大野雅史、有吉誠一郎、滝澤慶之、大谷知行

KEK 清水裕彦

大阪電通大 倉門雅彦、志岐成友

埼玉大 高田進、明連広昭、田井野徹

超伝導トンネル接合素子(STJ) の開発と評価を中心に

STJの構造

超伝導膜 / 絶縁膜 / 超伝導膜 という構造の、ジョセフソン素子の一種

	Z	転移温 度(K)	ギャップエネ ルギー(meV)		
Al	13	1.20	0.34		
Nb	41	9.23	3.1		
Та	73	4.48	1.4		

STJの作製

クリーンルーム

STJ作製専用 プロセス装置 群を所有

→ 基板に薄膜をスパッタによって成膜

フォトリソグラフィによるパターン形成

ドライエッチングによる薄膜の加工

チップの例

電流一電圧特性

放射線検出器としての動作原理

放射線からのエネルギー の付与

超伝導体中のクーパー対 を解離

発生した準粒子(電子)がトンネル効果でもう一方の超 伝導体電極へ

信号

動作条件

温度:転移温度のおよそ1/10

磁場:~100G

基板吸収型

STJの特徴

Charge carrier: クーパー対の解離によって発生した準粒子(電子)

解離エネルギー (1.7△) = 2.6 meV @ Nb

FWHM =
$$2.35\sqrt{(1.7\Delta)} F E = 4.3eV$$
 @ 5.9 keV

Fano factor Energy
(0.22)

優れたエネルギー分解能

電極構造自体が放射線を検出:不感層がない

低エネルギー粒子のエネルギー測定が可能

エネルギー分解能比較

直接吸収型による検出

素子構造の工夫

作成している素子の構造

Nb/Al-AlOx/Nb

Nb/Al/AlOx/Al/Nb

エネルギーギャップ Nb: 3.1meV

Al: 0.34meV

Nbよりもエネルギーギャップの小さい Alをトンネル障壁の上下に成膜することで、準粒子を障壁近傍に"トラップ" する。

➡ 10倍程度の信号の増幅

S/N比の向上

素子性能評価実験

X線の検出

55Fe X線源使用

Nb/Al/AlOx/Al/Nb

5.9 keV X線のスペクトル

ダブルピーク

上部・下部で吸収された信号の両方がピークをつくるため、ひとつのエネルギーに対して2本のピークが現れる

H.Sato et al., Jpn. J. Appl. Phys. 39 (2000) p5090

軟X線の検出

極端紫外線の検出

>90% of photons are absorbed by top layer.

(KEK-PF BL-12A)

可視光の検出

フォトダイオードからの可視光をSTJに照射

FWHM=1.5eV@2.64eV (470nm)

S.Shiki et al., Nucl. Instr. Meth. A520 (2004) p530 S.Shiki et al., Publ. Astron. Soc. Japan 56 (2004) L19

低エネルギー陽子検出

$$dN \propto \left[1 + {m Q} {m p_e \cdot m p_{\overline{
u}} \over E_e \cdot E_{\overline{
u}}} + {m J} \cdot \left(A {m p_e \over E_e} + B {m p_{\overline{
u}} \over E_{\overline{
u}}} + D {m p_e imes m p_{\overline{
u}} \over E_e E_{\overline{
u}}}
ight) + ...
ight]$$

無偏極中性子を使用(J=0)

る極低温検出器

電子と反ニュートリノとの角相関項

反ニュートリノの代わりに、反跳陽子を測定

飛行中の中性子が 崩壊した際に生じる陽子と電子を検出し、陽子のエネルギースペクトルを得る

現在の測定値 a= - 0.103 ± 0.004

PDGの平均値

Electron detector

準備実験セットアップ

STJの構造: Nb(150nm)/Al(75nm)/AlOx/Al(75nm)/Nb(150nm)

STJの大きさ:50μmx50μm

スペクトル

それぞれ2時間の測定によって得られたスペクトル

まだ分解能を議論するまでには至らないが、STJの「不感層が無い」という特徴を活かした、低エネルギー陽子のエネルギー検出に成功

基板吸収型による検出

高い吸収効率 シングルピーク が実現可能 広い検出領域

直列接合素子を用いた検出

M. Kurakado et al., Proc. SPIE 1743 (1992) 351.

 α -particles are absorbed by substrate.

Phonons are created.

Phonons are detected by four series array STJs.

Signals from for series arrays are summed.

Full energy peak of α -particles are obtained.

線テスト用直列接合素子

Sapphire substrate

Effective area: 8mm x 8mm

288 series x 3 parallel x 4 arrays

= 3456 STJs

評価実験のセットアップ

Data acquisition process

Preamp. Signal (Array-4)

Shaping amp. $ts = 1 \mu s$ xlArray-2 Chip Array-4 x2Preamp.

エネルギースペクトル

Sum of 4 arrays (Coincident events)

位置補正解析

Position dependence of the pulse height

Broaden the peak width

$$x = \frac{x2}{x1+x2} \qquad y = \frac{y1}{y1+y2}$$

Correction coefficient $R=V_{max}/V_{peak,cell}$

Distribution of $V_{peak,cell}$

位置補正解析の効果

Before

After

Correction condition

Segmentation: 75 x 75 cells

Events in one cell > 100 events

別のチップデザインの場合

φ100μm-JJ x 40 series x 4 parallel x 4 arrays

Nb	150nm	
Al	70nm	
AlOx		
Al	70nm	
Nb	200nm	

Sapphire substrate

Before correction

After correction

(0.52%)

テラヘルツイメージング

ログペリアンテナ(Nb)

STJ

直径 2.2 μm

高感度

 $NEP_{STJ} \sim 10^{-(17 \sim 18)} W / Hz$

イメージング測定例

STJ検出器1画素を用いて、試料のスキャンにより イメージングを行う

実験のセットアップ

STJを用いた世界初のテラヘルツ 透過画像(SUICAカード)

現在、5画素リニアアレイに着手

今後の開発項目

エネルギー分解能の向上

素子作製プロセスの最適化

検出エリアの拡大

単素子の面積拡大

素子のアレイ化

多素子読み出し

配線数には限界あり

超伝導エレクトロニクスとの融合

低温領域にADC、MUXを導入し、多素子読み出しに対応

クライオスタットの技術向上

簡便に長時間運転が可能 無冷媒冷凍機

超伝導ADC回路のテスト

将来のSTJ読み出しに向けて、超伝導回路の動作実験を開始

4.2K

名古屋大学 藤巻研究室との共同研究

ADC (Nagoya Univ.)

8 bit, 50~100MHz clock 8 bit parallel readout

ADCの入力に、外部より 正弦波を入力。ADCアウト プットをPCで取り込んで 再構成

実験に使用している冷凍機での動作を確認。 現在、STJとの組み合わせテスト準備中。

他のグループの例

ESA-ESTEC

S-Cam 2

STJを用いた、地上天文観測用アレイ

Ta-Al JJ, 40µm角 6x6アレイ

Crab pulsar の観測等に使用されている

S-Cam 3 12x10 pixels
D.D.E. Martin et al., NIM **A 520** (2004) 512

LLNL

放射光でのX線吸収分光 (fluorescence-detected XAS)

Ta-Al JJ, 9素子

たんぱく質中のMnの結 合状態の知見

S. Friedrich, NIM A **520** (2004) 621

超伝導転移端温度計(TES)

Transition Edge Sensor: TES

構成:フォトンの吸収体 + 高感度温度計(TES)

フォトン入射時の吸収体の温度上昇を、高感度な温度計(TES)で測定

極低温での物質の格子比熱

:温度の3乗に比例して小さくなる

極低温での物質の電子比熱

は温度に比例して小さくなる

mK程度の温度上昇

超伝導体のTc付近における抵抗値の 急峻な温度依存性を利用

TESの特徴

エネルギー分解能

$$\Delta E_{(FWHM)} = 2.36\sqrt{4kT_c^2C(1/\alpha)\sqrt{n/2}}$$

C: 熱容量

:転移の急峻さを表すパラメタ (=d[logR]/d[logT])

n:定数 (=5)

Tc, Cが小さいほど、またが大きいほど良い分解能が実現

信号の時定数

$$\frac{\tau_{\text{eff}} = \frac{C}{G(1 + \alpha/n)} \qquad (数10 \sim 数100 \,\mu\,\text{s})$$

G:TESと熱浴の間の熱コンダクタンス

開発状況

低エネルギー陽子検出のためのTESを開発中

コンセプト:大面積、比較的高い転移温度

SiNメンプレン(500nm)

TES:

Au(35nm)/Ti(100nm)/Au(35nm)

サイズ:500μm

Tc=380mK

55Fe 線源からのX線で評価

分解能向上のため、開発続行中

"普通の"TESのパフォーマンス

5.9keV X線による評価

	$\Delta E(eV)$	(µs)	Thermometer	Tc(mK)	$Rn(\Omega)$	Absorber
SRON	4.5 (3.9)	100	TiAu	96	0.25	Cu
NIST	4.5	750	MoCu	93	0.017	None/TES
GSFC	6.1	310	MoAu	106	0.010	None/TES
Jyvaskyla	9.2	260	TiAu	150	0.25	Bi
東大	9.4	400	IrAu	110	0.15	None/TES

東大中沢·高橋研

まとめ

視光から硬X線までの光子検出、線・陽子等の粒子検出が可能な、STJの開発

STJ单接合·直接吸収型

極端紫外線・可視光等、低いエネルギーへの応用が適している

STJ直列接合·基板吸収型

エネルギーの高い光子(硬X線)・重イオンへの応用が適している

現在の開発の中心

- ·低エネルギー陽子検出器 (STJ, TES) 中性子ベータ崩壊実験へ適用
- ・検出領域の大面積化
- ·超伝導ADCを用いた波形取得
- ·25画素テラヘルツイメージングの実現(理研仙台THzグループと)