CMS DAQ Online Frameworks, XDAQ + RCMS

Contents

- Introduction
- XDAQ: Online application framework
 - User application
 - Messaging
 - Tools
- RCMS: Configuration and control framework
 - Control structure
 - Back-end services
- Status/summary

LHC

• A machine for Higgs and beyond.

Beam Energy: 7TeV Circumference: 26.7km Luminosity: 10³⁴cm⁻²s⁻¹ #Bunches: 2835 p/bunch: 1.1x10¹¹

CMS Experiment

- One of four experiments at LHC
- 36 nations, 169 institutions, 2300 scientists
- Compact' Muon Solenoid ½ the size of Atlas

CMS Data Acquisition System

- Two stages design
 - Level-1: synchronous/hardware
 - HLT: asynchronous/PC-farm
- ~700 inputs, 1MB/event

CMS DAQ System (cont'd)

- Sliced architecture
- Slice': 1/8 of the DAQ
- Factorizing scaling problem
- Staged installation: 4 slices in 2008

KEK seminar, 2007/10/15

FED

Online Frameworks

XDAQ

- CMS online software framework in C++. (Configuration, messaging, event handling...)
- It's a toolkit, too.
 (FSM, threads, logging, monitoring...)
- Extensive use of XML for configuration/messaging
- Both fast-binary and slow-XML communications
- Scalable: from small test stand to the CMS DAQ.
- First tagged release in 2000.
- J. Gutleber and L. Orsini http://xdaqwiki.cern.ch/

XDAQ: User Applications

- XDAQ user application is a collection of call-back functions, typically attached with FSM transitions.
- Applications run on distributed platforms

Same application, different configuration

XDAQ: Message Types

Flexible choices of message type Binary I2O messages: fast, efficient XML(SOAP-on-HTTP): slow, flexible HTTP/HTML: easy **UI: HTTP** data: I2O control: SOAP KEK seminar, 2007/10/15 10

XDAQ: Peer-Transport

- Pluggable abstraction layer of various networking medium
 - I2O: TCP, aTCP, Myrinet, FIFO
 - SOAP/HTML: HTTP
- e.g., Application code doesn't change when you switch from Ethernet to Myrinet.

XDAQ: I20 Messages

- I2O header format was adopted for CMS use
- Binary data format
- In XDAQ,
 - used to pass data fragments
 - applications can register call-backs for XFunctionCode

XDAQ: SOAP Messages

- W3C standard to send information in XML
- Mostly used on HTTP
- Synchronous protocol
- Many libraries/parsers available
- In XDAQ;
 - Send a command (w/ arguments)
 - Get/set application's parameters
 - WS-eventing for error-report / monitoring

Command Message

SOAP message drives application's call-back.
Xerces-C based SOAP library to help users.

14

Parameter Access

 'Exported' parameters are accessed via SOAP messages.

class App {
 xdata::String mode;
 xdata::Integer count;
}
...
App::App(...) {
 fireItemAvailable(
 "mode", &mode);
 fireItemAvailable(
 "count", &count);
}

<soap:Body> <xdaq:ParameterGet ... <App:properties> <mode type="string"... <count type="integer"...

WS-Eventing

- XML based publish/subscribe messaging.
- Clients sends messages to a server.
- Server distributes messages to subscribers.
- In XDAQ,
 - used for monitoring and exception propagation
 - server: in-house development
 - helper applications to feed parameters or exceptions to the WS-E system

Monitoring Scheme

- Monitoring information 'table' is sent to WSeventing server as a SOAP message with binary attachment (type-tagged XDR).
- Clients subscribes to the server, with XPath query.

Exception Handling Scheme

• C++ exception handling inside applications.

client

18

- 'Notified' to the WS-E system.
- Client (typically, upper level controller) receives exception SOAP messages.
 report
 report
 server

report sentinel

} catch (xcept::Exception e) {
 notifyQualified("fatal", e); }

Application KEK seminar, 2007/10/15

XDAQ: Data Types

- Serializable data objects
 - Simple types and container types
 - Serializable to XML or type-tagged XDR.
- Used in,
 - Application's exported parameters.
 - Contents of monitor report.

Boolean, Integer, Long, Integer32, Integer64, UnsignedInteger, UnsignedInteger32, UnsignedInteger64, UnsignedShort, UnsignedLong, Float, Double, Timeval, Bag, Vector, Table, Properties, Mime

19

XDAQ: Configuration by XML

 Sending 'Configuration' XML to the platform (executive) loads applications dynamically.

<x:Partition ...> <x:Context url="... <x:Application class="App" <x:Application class="App" <x:Module>libApp.so</... </x:Context> <x:Context url="... <x:Application class="App" <x:Module>libApp.so</... </x:Context> </x:Partition>

XDAQ: *Miscellaneous Tools*

- Web interface: HyperDAQ
- Finite State Machine
- Logging
- Worker thread
- Service discovery via SLP
- Helper applications
- ... and a lot more ...

XDAQ: HyperDAQ

- Enables users to access applications with Web browsers
- Binding HTML call-backs to URLs

... App::Page(...) { - write out HTML -

- using cgicc -

LTC "Endcap Muon CSC" (Slot=20, lid=30)

DAQ

[LTC Control] [Main Config] [VME] [Sequences] [Cyclic Gen.] [Summary] [Monitoring] [Register

LTC "Endcan

LTC Control (Endcap Muon CSC)

LTC State Machine	Enabled	Trigger Ticket. Off	Run no: 241	Periodic Seq. Off (1 s)
Configure	Enable	Suspend	Resume	Halt
Resync	HardReset	LIATicket	User Sequence:	

The State Machine buttons and the "Resync" and "HardReset" buttons are associated with cor

XDAQ: Finite State Machine

- In general, behavior of control applications are understood in a finite state machine model.
- User can bind XDAQ application functions to FSM state transitions.
- Typically, combined with SOAP call-backs.

XDAQ: Logging

- Iog4cplus: C++ library compatible with log4j
- Using TTCC format everywhere
- Custom made appenders, XML and UDP
- Configurable by the application configuration file, as well as on-the-fly (log level).

Use Case – Event Builder

- PC farm interconnected by a big GbE switch.
- Input side: ~60 PCs with Myrinet cards
- Output side: O(10²) PCs
- ~600 XDAQ applications in the current setup,
- S. Murray http://cms-ru-bi

http://cms-ru-builder.web.cern.ch

Use Case – HCAL Test Beam DAQ

- Java stand-alone GUI to control XDAQ applications.
- Stand-alone event builder using same I2O messages as CMS EVB
 - → Switching to CMS EVB for combined runs (Muon, ECAL)
- Used also for commissioning, test benches and beam tests of other small detectors.
- J. Mans

RCMS

- Run Control and Monitor System
- Configuration and control framework for CMS
- written in Java
- Function Manager: node of the control tree
 - Flexible structure for
 - Providing concrete DAQ-subdetector interface
- Uniform configuration DB for everyone
- First release in 2004.
- A. Oh, A. Petrucci, M. Gulmini et.al. http://cmsdoc.cern.ch/TriDAS/RCMS/

RCMS: Control Structure

RCMS: Services

- Security: user account
- Resource: configuration
- Info & Monitor: status/messages
- Job control: start/stop applications

RCMS: Function Manager

- Input Handler
- Event Processor
- Resource Proxy
- 'Resources': FM, XDAQ
 JobControl, etc.
 - monitor flow control flow state flow error flow customizable

RCMS: Configuration DB

Resource Service 3: DAQ configuration DB

features

Fexible schema

Java API to R/W in RS3

Configuration documents can be built on the fly from relational schema

Versioning configuration system

Oracle and MySQL Compatible

RCMS: Configuration Tools

- DAQ Configurator
 - Tool for central DAQ group: for large scale system.
 - Can be used both graphically or programmatically.

RCMS: Configuration Tools (cont'd)

- Resource Service Manager
- Reads XML configuration files and stores into the DB
- GUI
 - define structure
 - change parameters
 - organize in folders
 - associate with global key

RCMS: GUI

- JSP based GUI
- Selection of subdetector / part of sub-detector
- Used for >1 year

RCMS: Miscellaneous Tools

- XDAQ Command / Parameter access
- Thread pool
- Parallel/asynchronous communications
- General message receiver + dispatch for non-RCMS entities.
- additional DBs
 - run number management
 - run-related user information

Interfacing XDAQ-RCMS

- Most of the messaging is on SOAP
 → Easy to handle in Java (RCMS)
- Commands/Parameters: interfacing library
- Logging: log4j compatible XML schema
- Exceptions: mutual agreement on the schema (planned)
- Monitoring: mutual agreement on the schema + interfacing library (to handle binary format) (on-going work)

Operations: Global Runs

- MTCC on surface in 2006.
- Global runs every month since May 2007.
 - Real muon triggers, all components timed-in
 - Still ~3% of the readout. (no Tracker)
- Good for software integration and prioritize task list.
- Cosmic run in Nov.
 - All detectors?

Operations: Testing

- Testing is important in a complex system, like CMS DAQ.
- Many components have unit tests.
- Most of the components have semi-automated functionality tests.
- Developers uses test clusters for acceptance tests.
- Test clusters are also used to test integrated systems.
- There are dedicated librarians + integration testers.
- Still, a few new problems show up in every global runs ...

Operations: Testing (cont'd)

- Test clusters with various scale/purpose
- Small: R&D cluster
 - Full chain of 8(FED)-8(RU)-8(BU)-8(FU)
- Medium: Surface integration cluster
 - EVB-FU farm test of 16(RU)-64(BU+FU)
 - Used also for surface cosmic-ray tests
- Large: Production system
 - Currently, 2-slice worth (~600 PCs)
 - Used for global runs

Status / Outlook

- Use of framework for all the online software
 - reduces user's effort.
 - defines interfaces among components.
- Use of open-standard/open-source products
 - reduces development effort.
 - makes integration easier.
- CMS online frameworks are used uniformly in the experiment.
- Further improvements are foreseen as the production system approaches nominal scale.
- CMS DAQ is (almost) ready for the beam runs. KEK seminar, 2007/10/15

42

Summary

XDAQ

- extensive use of XML \rightarrow flexible, easy integration
- extensive use of 'open-source' products
- all necessary functionalities for DAQ, including fast/slow messaging and utilities
- used by CMS DAQ + all the sub-detectors
- RCMS
 - extensive use of Web technologies
 - flexible configuration
 - plug-and-play integration with sub-detectors

Summary (cont'd)

- Integration going well, systems are stable
 - XDAQ + RCMS
 - central DAQ + sub-detectors
- Problem areas
 - Deployment scheme / Scalability
 - found slowly, solved slowly but steadily.
- Interactions with users are important.
 - Provide all the functionality, or users start their own development.
 - Quick turn-around time is a key to improve the framework.