Fujikura Thermal Technology Overview

Randeep Singh
Thermal Technology Division (TT開)
Fujikura Ltd. Tokyo
Key Technology of Thermal Product

Heat Pipe

- Passive system
- Two phase heat transfer
- One directional heat flow

Vapor Chamber

- Passive system
- Two phase heat transfer
- Two directional heat flow

Micro-channel

- Active system
- Single phase heat transfer
- Multi directional heat flow
Applications Areas

- **Cooling Electronics**
- **Energy**
- **Automotive Application**
- **Global Warming & Environment**
- **Aviation**
- **Healthcare**

- Heat Pipes
- Heat Pipe Module
- Vapor Chamber
- Heat Sinks
Heat Pipe
Heat Pipe Operation Principle

- **Evaporation**
- **Heat transfer by vapour**
- **Condensation**
- **Capillary or gravity pumping**

Equations:

\[
\frac{2\sigma \cos \phi}{r} = \rho gh
\]

- Surface tension
- Capillary pressure
- Pore radius
- Pumping height

Diagram:

- Evaporator
- Wick
- Container
- Condenser
- Vapour flow
- Liquid flow
- Heat source
- Heat sink

Cross section:

- Sintered copper wick
- Copper tube

Heat Pipe

Heat Pipe Thermal Module
Heat Pipes have become popular and consumer products now. Approx. 13 Mil. Pcs / month heat pipes are produced in the world.
Functions of thermal control device in cooling

Heat Spreading
Heat Transfer
Heat Dissipation

Thermal circuit diagram

Air In

Air out

Heat source, T_s

Heat spreader

T_e

T_c

R_{s-cp}

R_{c-p-hx}

R_{h-x-a}

R_t

T_a

T_s

T_e

T_c

T_a

T_s

T_a
Summary of Cooling Design Trend for Desktop PCs

TYPE 1
Extrusion parallel fins

TYPE 2
High aspect extrusion parallel fins with copper embedded base

TYPE 3
High aspect extrusion radial fins with copper insertion core

TYPE 4
Fine pitch stacked fins soldered heat sink

TYPE 5
Heat pipe heat sink

PGA

Rca: 0.5 °C/W
Low Performance

LGA

Rca: 0.2 °C/W
High Performance
Various Heat Pipe Remote Heat-Exchanger for Laptop PC

<table>
<thead>
<tr>
<th>Picture</th>
<th>Specification</th>
</tr>
</thead>
</table>
| ![Image](image1.jpg) | Heat pipe dia. 6.0mm x 1pc
*CPU 35 W (Rja < 1.25 °C/W) |
| ![Image](image2.jpg) | Heat pipe dia. 6.0mm x 3pcs
*CPU 25W (Rja < 2.20 °C/W)
*GPU 10W (Rja < 5.50 °C/W) |
| ![Image](image3.jpg) | Heat pipe dia. 6.0mm 1pc
Heat pipe dia. 5.0mm 1pc
Heat pipe dia. 4.0mm 1pc
*CPU 27W (Rja < 1.75°C/W)
*GPU 7 W (Rja < 5.55°C/W) |
| ![Image](image4.jpg) | Heat pipe dia. 6.0mm 1pc
*CPU 25W (Rja < 1.70°C/W) |

Fujikura
Thin and Light Solution combination of 2mm thick or thinner heat pipe with Aluminum fins are applied in current Laptop PC.
Typical Consumer Products of Heat Pipes for Cooling PC

- 4 mm Heat Pipe
- 6 mm Heat Pipe
- 1 inch Heat Pipe
- Vapor Chamber
High Power Heat Pipe Heat Sink for Desktop PC

130W/CPU x 2 CPUs
Thinner Heat Pipes

◆ 1.5 mm thick : Qmax: 25 W
Rhp: 0.2-0.3 K/W

◆ 1.0 mm thick : Qmax: 10 W
Rhp: 0.3-0.5 K/W
Regardless with the total inner cross-section of the heat pipe, optimized liquid to vapor flow area ratio is with the range of 0.5~0.6

Porosity, ε : 0.7 (Experimental Value)
0.6 for similar shape powder wick

Contact Angle, θ : 18 deg (Experimental Value)

Permeability, K : 8.0×10^{-10} (Calculated Value)
7.5×10^{-11} for similar shape powder wick
Wick Structure of Thin & Flat Heat Pipe

Features:
- Sufficient Capillary Force
- Sufficient Vapor Space
- Liquid Flow Through Fiber and Groove under Fiber

Cross-Section of Center Fiber Wick For 0.8mm to 2mm Thick Heat Pipe

Spiraled Type
- Cu Wire

Twisted Type

Center Fiber Wick

Wick

Vapor Space

X-Ray Picture of Straight Thin Heat Pipe
For a 2.0mm flattened thickness with the effective length 110mm, Qmax can be up to 48W.
Ultra-Thin Heat Pipe Performance

1) D1.0mm Heat Pipe Thermal Performance

Heat Pipe Specification

Length = 75mm

Wick: Center Fiber Wick

Vapor Flow Area

Wick

Liquid Flow Area

50C hot water

Thermal Tape Become Red at 45C
EXPERIMENTAL STUDY: Fabricated Module #1

Specification

- **Heat Pipe**: L 300.0mm T 1.3mm
- **Module Weight**: 27gm and 20gm
- **Maximum Height**: 5.0mm
- **Heat Source**: In Center

Using D8.0mm Qmax : 68W
Using D6.0mm Qmax : 64W
EXPERIMENTAL STUDY : Fabricated Module # 2

Specification

Heat Pipe: L 140.0mm W 9.0mm T 1.0mm
Module Weight: 19gm (Including Fan)
Maximum Height: 4.0mm

Current module Qmax About 20W if Air Flow Available
EXPERIMENTAL STUDY : Fabricated Module # 3

Specification
- Heat Pipe: L 100.0mm W 9.4mm T 0.8mm
- Module Weight: 14gm (Including Fan)
- Maximum Height: 3.8mm

Total Resistance
- Horizontal Qmax 5W
- Top Qmax 5W
- Bottom Qmax 7W

Temperature Profile
- Heater Temp Below 60C At All Heat Mode

Current module Qmax is 5~7W
EXPERIMENTAL STUDY: Fabricated Module # 4

Specification

Heat Pipe: L 140.0mm T 0.8mm
Module Weight: 12gm
Maximum Height: 3.8mm
Fin Assy: W 40mm L 10mm H 3.0mm

Estimated highest Qmax is 12.0W.
EXPERIMENTAL STUDY : Fabricated Module # 5

Specification

- **Heat Pipe**: L 100.0mm, W 4.5mm, T 0.6mm
- **Module Weight**: 8gm
- **Heat Source**: Three Heat Sources
 - H1: 3W, H2: 1.5W, H3: 1.5W
- **Maximum Height**: 0.7mm

Comparison

Current Module vs 0.7mm Thick Graphite Sheet

<table>
<thead>
<tr>
<th></th>
<th>Th1[C]</th>
<th>Th2[C]</th>
<th>Th3[C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Module</td>
<td>75.0</td>
<td>67.5</td>
<td>69.0</td>
</tr>
<tr>
<td>0.7mm Graphite Sheet</td>
<td>85.0</td>
<td>77.8</td>
<td>81.2</td>
</tr>
</tbody>
</table>

For current module Th is 5~10°C lower than graphite sheet.
Concept – Heat pipe + Spreader plate

Heat pipes and spreader plate
- Heat pipes 0.7-1mm thick.
- Metal (Al or Cu) spreader plate 0.2mm thick.
- Heat pipe is a super heat conducting device, better than any known metal due to its 2-phase internal heat transfer. Therefore, heat pipe is used to spread the heat more efficiently on the heat spreader plate for better cooling.
Heat Pipe Applications for Vehicles

- Head Lamp Cooling
- Display LED Back-Light Cooling, Car Navigation CPU Cooling
- Rear Lamp Cooling
- Preheated Intake Air (Fuel System, Energy Conservation)
- Power Drive unit (PDU) Cooling
- Battery Cooling (Hybrid)