R&D on Counting Pixel Chips

Yunpeng Lu

Outline

- Motivation
- Fundamental Issues
- Current Mirror & Amp-Sha-Disc
- Nested-Wells & DSOI
- Summary

Motivation(1)

- Shielding is a key issue in SOI Pixel Technology, and Counting Pixel is an effective measure to study it.
 - Necessity of shielding was recognized and understood by F. X. Pengg
 - Integrating pixel works fine with BPW suppressing back gate effect

(Why no charge injection observed? Slow slew rate/ Cancelled by integration?)

- But in counting pixel, charge injection messed up the counting results.

Shielding-well proposed by F. X. Pengg in his dissertation "Monolithic Silicon Pixel Detectors in SOI Technology"

Good concept but not implemented successfully.

Figure(2.11*a*): The n+-p-n- structure of shield and well in the high resistivity substrate, cut.

Motivation(2)

- Counting Pixel is getting more and more popular in synchrotron radiation application.
- Particularly interested in the area detector proposed by Prof. Kishimoto.
 - 30 um² pixel size
 - 1k frames/s
 - 14 bit counter
 - Low energy X-ray 2~4 keV

Very compact pixel circuit and good S/N required!

Fundamental Issues

- On-chip circuit
 - Amp-Sha-Disc system
 - Counter and register in pixel
- Shielding
 - Nested-wells
 - Double SOI
- Leakage current
 - Low temperature would mitigate it
- Radiation damage
 - Should be fine if back-illuminated by low energy X-ray

Review of CPIXTEG2 results

- Amp-Sha-Disc system
- **Counter and Register** \checkmark
- **Bias and Aobuf**
- **Current Source variation**

- ✓ Shielding between analog and sense node
- ✓ Response of Light stimulus
- Shielding between counter and sense node not reported

A-R-Tec Confidential 2012/3/19 大本·今村

N基板	用及び	{N	,P]基	栃	į#	、 用TEG	<u>P基板</u>	用TEG						
TEG種別	TEG番号		チヅ 2	ブID 3	番号 4	<u></u> −5	コメント	TEG種別	TEG番号		チッ: 2	ブID 3	番号 4] 5	コメント
pixel array	PA-1C_N	0					レジスタ(CSR,DATA)読み書き確認のみ	nivel error	PA-1C_P	0					レジスタ(CSR,DATA)読み書
	PA-2C_N	0		L.			レジスタ(CSR,DATA)読み書き確認のみ	pixel array	PA-2C_P	0					レジスタ(CSR,DATA)読み書
cross-talk	0-1C_N	Ó													
	0-2C_N	0						cross-talk							
	0-3C_N	0						oross can							
	0-4C_N	0		┝		_			+		_	_		_	
	1-1C_N	\overline{O}							<u>1-1C_P</u>						
preamp+	1-2C_N	0						preamp+	1-2C_P						
snaper+	1-3C_N	8		<u> </u>				shaper+	1-3C_P						·
aiscri	1-40_N	R		-				discri	1-40_P						·
	2-1C N	К		┝	┝━				2-10 P	 			┝╸┥		╊━━━━━━━━━
	2-2C N								2-20 P						· · · · · · · · · · · · · · · · · · ·
preamp+	2-3C N	ŏ	ŏ					preamp+	2-30 P						
shaper	2-4C N	ŏ	ŏ					shaper	2-4C P						
	2-5C N	ŏ	Ŏ						2-5C P						
	3-1C N	Õ	Ō	0	+-				3-1C P	1-					
preamp	3-2C N	Ô	Õ	0				preamp	3-2C P						
	3-3C_N	Ο	0	0				l i	3-3C_P						
shaper	4-1C	Ο	-				TEGアレイ中のshaper(TEG1X,2X)の	- hannen	T			_			
	4-4C	Q					測定でshaper <u>の特性を評価</u>	snaper							
discri	5-1C_N	0	0	0				discri	5-1C P	0	Ó	0			
aobuf		0	Ο	0	0	0		aobuf							
bias		0	O	0	0	O		bias							

Continuing efforts of Nested-wells on CPIXTEG3

New nested-wells layout:

- Expand to full pixel
- More BNW contacts

CPIXTEG3

TEG04C_N

Findings though CPIXTEG2/3

- Low current source variation (double checked)
- Insufficient shielding efficiency if the sense node overlaps with Discriminator or Counter (measured on CPIXTEG3)
 - Shielding between shaper and sense node is good (double checked)
- A new chip CPIXTEG3b designed on basis of above findings.

The Krummenacher Scheme and current source

- The kummenacher scheme was adopted for Preamp and Shaper in cpixteg2/3 design.
 - Baseline of output can be set by Vref, which is good for DC coupling to the next discrimination stage.
 - However, its operation relies on the exact ratio of Isource_h and Isource_l.

- PREAMP is not supposed to work with VH_FB_AMP_P/VL_FB_AMP_P=3.14nA/1.95nA (0.53nA/1.1nA by SPICE).
 - Feedback current ~ (VL_FB_AMP_P VH_FB_AMP_P)
- Some PREAMPs among the 13 TEG elements did fail to operate.
 - Others showed quite different falling edge, which implies different feedback current

350ns falling edge ~ 4.6nA feedback current 48.4us falling edge ~ 0.033nA feedback current 6.1us falling edge ~ 0.26nA feedback current

Constant Current Feedback

- Constant current feedback structure is less dependent on the precision of low current source.
 - Variation of current source only changes falling edge but the amplifier would still operate.
 - Vout depends on the Vth of input transistor, leakage current and DC operating point of feedback transisitor.
 - DC coupling to discriminator is not a good choice any more.

Differential-pair discriminator

• DC coupled discriminator used in CPIXTEG2/3.

 Differential pair with composite load(a diode-connected transistor and another one operated in linear region)

- Hysteresis
- DAC coded current to adjust the local threshold

Diode-biased-inverter discriminator

- Used in the PILATUS chip.
- AC coupling is compatible with Amp-Sha that adopted the constant current feedback.
- 120e- threshold dispersion without threshold trim reported, very attractive.
- Threshold voltages set by Vdiode according to Ithr = Is(e^{VD/VT} -1)

Amp-Sha-Disc System designed for CPIXTEG3b

- Constant current feedback Preamp, 5fF feedback capacitor
- AC coupled to shaper, voltage gain of 6
- AC coupled diode-biased inverter discriminator, 4-bit local tunning

$I_{\text{threshold}}$ (I_0) =40nA, input charge = 750e⁻ to 2000e⁻

input charge = $1500e^{-}$, $I_{threshold}$ (I_0) = 40nA to 66nA

threshold scan

l threshold	input charge (e ⁻)	Transition charge (e ⁻)	Average input charge (e ⁻)
25nA	625-812.5	712.5-775 (62.5)	743.75
75nA	1500-1687.5	1575-1662.5 (87.5)	1618.75
125nA	2375-2562.5	2437.5-2537.5 (100)	2487.5
150nA	2812.5-3000	2875-2975 (100)	2925

Average input charge (e⁻)

Total Noise Spectrum @ shaper output

Primary noise source: NN1&PP1 of preamp around 2 MHz;

NN1&PP1 of shaper at low frequency;

SUM = NN1_preamp + PP1_preamp + NN1_shaper + PP1_shaper

(Total – SUM) is mainly contributed by the Feed-back Tr. (P1) in shaper

- Noise @ PREAMP Output
 - $n_{o} = 1.4 mV$
 - equivalent to 70 e^{-1}
- Noise @ SHAPER Output
 - $n_{o} = 6.8 mV$
 - equivalent to $57 e^{-1}$

Cd=100fF; Cf=5fF; Ccouple = 30fF Ifb_preamp = Ifb_shaper = 1nA;

First Test Results of CPIXTEG3b (1)

- Bias current measurement (VIO_BPW = 0.85V)
 - Discrepancy between lout and lout_pixel1,2,3 affected by VIO_BPW, but required different VIO_BPW to compensate NMOS and PMOS respectively.
 - Error on Ifb_shaper not understood.
 - Should be OK to operate the chip on the basis of measurement results.

Current Source	Iin (nA)	Current Ratio	Iout (nA)	Iout_pixel1 (nA)	Iout_pixel2 (nA)	Iout_pixel3 (nA)
Ifb_preamp	-10.5	10:1	-1	-0. 49	-0.5	-0.47
Ifb_shaper <	1.6	10:1	1.4	> 1.3	1.4	1.4
Iref_preamp	-3000	4:1	-791	-726	-709	-696
Iref_shaper	3000	4:1	1180	1140	1200	1170
Ithr	-1500	8:1	-223	-172	-167	-172
Ithr_tunning	-40	8:1	-4			

First Test Results of CPIXTEG3b (2)

- Analog out of Preamp
 - Vtest = 80mV, equivalent to 1900 e^{-1}

First Test Results of CPIXTEG3b (3)

- Analog out of Shaper
 - Vtest = 80mV, equivalent to 1900 e^{-1}

First Test Results of CPIXTEG3b (4)

- Analog out of Discriminator
 - Vtest = 80mV, equivalent to 1900 e^{-1}

First Test Results of CPIXTEG3b (5)

S curve measurement

ENC ~ 27e⁻

uA

 %PS

S

Shielding Measurement on CPIXTEG3 (2)

TEG04C_N

<u>1. Charge</u> Injection with Discr. working

Vtest = 600mV; VL_AMP_N = 280mV; Vdet = +5V 2. Charge injection with Discr. stopped

Shielding Measurement on CPIXTEG3 (4)

Preliminary resutls on CPIXTEG3b

First CPIXTEG3b dilivered was fabricated on normal SOI wafer. No DSOI at all. Clear crosstalk seen.

Summary

- Shielding is a critical issue in counting pixel chips.
- A new Amp-Sha-Disc system works, which is less dependent on the precision of very low current source.
- Nested-Wells provided shielding between analog and sense node, but no sufficient for shielding digital part in the pixel.
- Small sense node and small pixel is being pursued.