

Purposes of the experiment

- Apply up to 100 W power to the dummy load.
- Reduce the CO2 flow in order to observe the dry out of liquid CO2 in the tube due to excess heat.

Main components of the test setup

Kasami assembled the system in the difficult condition after the Earthquake all by alone.

Experiment/Control

Time		Pressure target	CO2 flow target	Heater control (W)	
14:32	1	2.0 MPa	Opened	0 (off)	Start experiment. Pressure valve adjusted.
14:44	2		10 l/min	0	Needle valve adjusted.
14:50	3			50	Turn ON heater.
14:55	4			70 → 100	Increase heater power
15:03	⑤			110	Maximum heat. Dry out is accelerated.
15:05	6			70	The heater power decreased. Dry out is solved.
15:15	7			100	The heater power is increased. Dry out happened again.
15:19	8		20 l/min		CO2 flow increased → Dry out disappeared.
15:36	9			0	Turn off heater power
15:41	10		Closed		Experiment Finished

CO2 dry out

Graphs

Log book

xs/forst. 13=40 号 = ON. 最後のヒーターのでも別たりで別使 14:30 C+LV OK. 目末 -20°, 2MPa. 102/min C02 2 14:32 ボンへあける。 入口弁 あける。 14:44 Needle 弁訓 登 14249 14250 50W) Power 51t -10,10 14255 50 -> 40W 1216°C 14=56 70 -100 W は、200mmカンカク 14:58 516°C 30°C 41°C 110 W 15:03 70W 5205 100 W 5=15 BIS:19 Nadle valve あけるのラ208/min "子子是 3/8"11917 15:36 Heater off 5:40 Gas 11-8

Heat mass of the HEX

Specific heat of SS is 0.6J/g/°C

Heat mass is 4800 J/°C.

 In order to cool down HEX from 20°C to -20°C, we need to remove heat corresponding to 192kJ or 640 g of CO2 evaporation.

• As we flew about 1-2 g/sec of CO2, it is natural the temperature of HEX was not stabilized before we finished the experiment.

SUS管φ6,0×1,0 t×100L 50

CO2出口(3回路側)