



# 放射光実験用X線検出器

# <u>初井宇記</u>・工藤統吾 理化学研究所

SOI量子イメージセンサ・コンソーシアム設立 記念研究会 2019/6/7

T. Hatsui, RIKEN 1







#### Müuller Heavy Target Tube ca 1890-191



Museum Dedicated to Surgical Science, Chicago











### SPring-8

- のべ~10,000名/年
- 日本の出版論文の約1%に貢献
- 民間の研究開発でも活用されている
  - 9万円/hour



設立記念研究会 2019/6/7

**SIKEN** 

SACLA

T. Hatsui, RIKEN

5



## X線と物質の相互作用







### 放射光施設で利用されているX線





X線回折による 原子構造の決定

透過像によるCT撮像

from wikipedia

SOI量子イメージセンサ・コンソーシアム設立 記念研究会 2019/6/7

T. Hatsui, RIKEN 7





### 散乱強度 ∝ 散乱角^-4 本質的に高いダイナミックレンジが必要な実験 (>O(6)) 放射光による高強度X線と高ダイナミックレンジ検出器が重要



# **SOPHIAS Sensor**

#### Ping Grid Array Package (Silicon nitride)



T. Hatsui et.al., Proceedings of International Image Sensor Workshop, (2013) Art. Num. 3.05

### Major Feature

- Peak signal 18.7 Me-/pixel
- Noise 160 e-
- Imaging Area: 64.77 x 26.73 mm<sup>2</sup>

Largest Sensor chip as monolithic active pixel sensor (MAPS) for radiation detection.



## **Camera Head**





Water Tubing

Cooling by a thermoelectric cooler with water circulation Sensor operation at -20  $^{\circ}\!\!\mathrm{C}$ 

SOI量子イメージセンサ・コンソーシアム設 立記念研究会 2019/6/7

T. Hatsui, RIKEN 10

#### X線画像検出器のトップ研究開発グループ Paul Scherrer InstituteのJungfrau検出器との比較

|                      | Jungfrau<br>(2017) | SOPHIAS<br>(2015) | 単位                        | コメント                              |
|----------------------|--------------------|-------------------|---------------------------|-----------------------------------|
| 利用開始                 | 2017               | 2015              | 年                         |                                   |
| 単一光子検出               | 可能                 | 可能                |                           | hv=6 keV                          |
| Frame rate           | 100                | 60                | Hz                        | XFEL施設の周波数に合致<br>すること             |
| 消費電力                 | 20-30              | 0.5               | μW                        |                                   |
| 画素サイズ                | 75                 | 30                | µm□                       |                                   |
| 画素数                  | 0.5                | 1.9               | Mpixels                   |                                   |
| 最大計数光子数<br>@hv=6 keV | 20,700             | 11,400            | photons                   |                                   |
| FoM1                 | 3.67 X4            | 12.6              | Photons/1 µm <sup>2</sup> | 最大計数光子数密度<br>hv=6 keV             |
| 消費電力                 | 20-30              | 0.5               | µW/pixel                  |                                   |
| 消費密度                 | 0.41-0.61          | 0.056             | W/cm2                     |                                   |
| FoM2                 | x10倍以<br>69-104 —— | 上<br>1368         | Photons/nW                | 最大計数光子*フレーム<br>レート/電力<br>hv=6 keV |

## SOPHIAS-L: 低ノイズバージョン

#### 高橋幸生(東北大学)らとの共同研究



SOPHIAS-Lによる ピンホールの回折画像 1000枚積 算 各ショットにつき<25 DNをDiscriminationにて信 号量0として積算 (各ショットBG引きあり)

- 2.5 keVの1光子検出まで可能となった。
- 硫黄原子を含む高分子材料の動的構造解析に利用する予定
  従来のCCD検出器に比べ100倍以上の高スループット化

### XFEL facility, SACLA (Since 2012-) 8 GeV 700 m long

### SR facility, SPring-8 (Since 1997-) 8 GeV circumference 1.5 km



SOPHIAS (2007-2018) ・ 50チップの製造, 95 Mpixels, 0.09 m<sup>2</sup> SOPHIAS-L (2017-2019)

SPring-8 IIの高度化(2020年代半ば)
 SPring-8-II Conceptual Design Report (2014)
 100~1000倍のX線光子束が得られる予定

### Next Gen. Detectors

### 放射光実験の硬X線画像検出器(>7keV)





2000~2010年代 欧州



|             | イメージング<br>プレート    | 間接検出<br>積分型CCD | 直接検出<br>計数型ハイブリッド |
|-------------|-------------------|----------------|-------------------|
| DR          | 5桁                | 4桁             | 6桁、~1 Mcps        |
| ノイズ         | ~3光子              | ~1光子           | ~0.1光子            |
| 速度          | $\sim$ 1/(10 min) | 10 Hz          | 100 Hz            |
| X線エネル<br>ギー | 不可                | 不可             | 不可                |
| X線照射耐性      | あり(交換)            | 一定程度あり         | ~0.3 MGy          |

放射光:地上で最も強いX線源

センサも高いレベルのX線耐性が必要(SOPHIASは10~100 Gyにとどまる) SOI量子イメージセン・

# 全自動X線照射装置(Total Ionizing Dose耐性評価)

Designed by Hyogo Univ. Developed by Hyogo Univ. and RIKEN.





SPring.







- 放射光
  - □ 真空中の電子を利用したX線発生メカニズムを利用。世界中で建設
- 利用
  - □ 多様な実験がある。重要な実験に回折実験がある。
- 検出器に対する要求
  - □ 回折角度が大きくなると、回折強度が急激に減少
- SOPHIAS
  - 微小な画素で高ダイナミックレンジを実現
  - 低ノイズ版のSOPHIAS-Lも順調に稼働
- 今後
  - □ SPring-8のアップグレードを予定している。
  - □ 更なる高度な検出器が求められている。
    - 回折
    - ・ 蛍光X線検出用(X線エネルギー検出)
    - コンプトン散乱用(光子エネルギー+ベクトル)
    - 透過X線用(deep sub-micron空間分解能、広い視野)

謝辞

■ 理研・JASRIのチームメンバー、および関係者の皆様



- 松本崇博、松田祐二<sup>1</sup>、寺西信一<sup>2</sup>
  - □ 1) 現 株式会社 ミスト
  - 2) 現兵庫県立大学
- 香村芳樹、高橋直、佐野睦、糸賀俊朗、田尻寛男(理研)
- 日本技術センター
- A-R-Tec
- ラピスセミコンダクタ
- 京セラ
- 新井康夫、倉知 郁生(KEK)

# ご清聴ありがとうございました。