Total Dose Effects for 0.15µm FD-SOI CMOS Transistors

Y. Ikegami¹, Y. Arai¹, K. Hara², M. Hazumi¹, H. Ikeda³, H. Ishino⁴, T. Kohriki¹, H. Miyake², A. Mochizuki², S. Terada¹, T. Tsuboyama¹, Y. Unno¹

¹IPNS, KEK, Tsukuba, Ibaraki, Japan
²Inst. for Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
³ISAS, JAXA, Kanagawa, Japan
⁴Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Motivation

• The silicon-on-insulator (SOI) CMOS technology has a number of advantages over the standard bulk CMOS technology, such as no latch-up effect, high speed and low power dissipation.

• A monolithic pixel detector featuring of these advantages is being developed under KEK Detector Technology Project.

• The fully depleted SOI (FD-SOI) CMOS technology provided by OKI Electric Industry Co., Ltd. is realizing the full features of the advantages.

• High radiation tolerance is expected, since the devices are fabricated using a very thin silicon layer.

 We investigated the total dose effects for transistors fabricated using the OKI 0.15µm FD-SOI CMOS process.

OKI 0.15µm FD-SOI Transistor parameters

	Vth	Gate Oxide Thickness	Voltage Tolerance
Low VT (LVT)	~ 0.2V	2.5nm	<1V
For analog			
High VT (HVT)	~ 0.4V	2.5nm	<1V
For logic			
IO	~ 0.5V	5.0nm	<1.5V
For I/O			

Buried Oxide: 200 nm thick Handle wafer: 650 µm thick (SOITEC) Backside Thinned to 350 µm, and plated with AI (200 nm) Body Control : floating body and body tie Body is connected with source in the body tie transistor.

Transistor TEG

	L/W= 0.14/280	L/W= 0.2/400	L/W= 0.3/600	L/W= 0.5/1000
Low VT	Floating + Body Tie	Body Tie	Floating + Body Tie	Body Tie
High VT	Floating + Body Tie	Body Tie	Floating + Body Tie	Body Tie
IO			Floating + Body Tie	Floating + Body Tie

16 NMOS and 16 PMOS transistorsW/L ratio is fixed to 2000.Sources were connected together in the TEG.Gates were connected together andDrains are selected by relays on a test PC board.

Irradiation

- Tohoku Univ. Cyclotron and Radioisotpoe Center (CYRIC)
- 70 MeV proton
- Beam profile x~15mm y~16mm
- Al Collimator Φ 10mm x 30mm (length)
- Scan 15mm x 15mm (TrTEG size :5mm x 5mm)
- The fluence was calculated later by measuring the Na24 product from the AI foil attached toeach TEG chip.
- All terminals were shorted using conductive sponge.

Expected	proton current	Irradiation time	Measured	Measured	lonization	# of chips
/cm ²	[nA]	[min.]	/cm ²	/cm ²	SiO ₂	
10 ¹⁴	20	21	4.5x10 ¹³	6.4x10 ¹³	54 K Gy	1 chip
10 ¹⁵	200	21	4.0x10 ¹⁴	5.8x10 ¹⁴	0.49 M Gy	1 chip
10 ¹⁶	400	105	3.8x10 ¹⁵	5.5x10 ¹⁵	4.7M Gy	1 chip

Total 3 TrTEG s

I_{ds}-V_{gs} Characteristics

2007/11/01 Y.Ikegami, KEK

IEEE Nuclear Science Symposium N44-6, Hawaii

VT shift (Dose dependence)

VT shift (gate length dependence)

VT shifts slightly increased as gate lengths became longer, except LVT NMOS.

Table shows $\Delta VTmax - \Delta VTmin$ with different gate lengths.

Dose [1MeV n-eq/cm ²]	NMOS LVT	NMOS HVT	NMOS IO	PMOS LVT	PMOS HVT	PMOS IO
6.4x10 ¹³	18	28	21	32	12	10
5.8x10 ¹⁴	5	19	20	32	12	10
5.5x10 ¹⁵	35	25	18	18	16	

Unit [mV]

2007/11/01 Y.Ikegami, KEK IEEE Nuclear Science Symposium N44-6, Hawaii

VT shift (Body Tie effect)

VT shifts of body tie transistors were slightly larger. Table shows VT(Body Tie) - VT(Floating).

Dose [1MeV n-eq/cm ²]	NMOS LVT	NMOS HVT	NMOS IO	PMOS LVT	PMOS HVT	PMOS IO
6.4x10 ¹³	3	4	14	3	5	15
5.8x10 ¹⁴	4	9	5	11	16	16
5.5x10 ¹⁵	1	2	12	5	23	

Unit [mV]

2007/11/01 Y.Ikegami, KEK

IEEE Nuclear Science Symposium N44-6, Hawaii

Back gate compensation

In order to reduce large VT shift, compensation by the back gate voltage is investigated. This figure shows the I_{ds} -V_{gs} characteristics of typical NMOS transistor for some back gate voltages (Low VT; L/W=0.14/280; Floating).

Back Gate Compensation Voltage

A voltage reference is defined by V_{gs}, where I_{ds}=500µA. $\Delta VT=V_{gs}$ after irradiation – V_{gs} before irradiation A back gate compensation voltage is defined by V_{BG}, where $\Delta VT=0V$.

2007/11/01 Y.Ikegami, KEK

Back Gate Compensation (VT shift)

When LVT (L/W=0.14/280; Floating Body) w/o bias condition was compensated by its V_{BG} , VT shifts for other type transistors were investigated.

=	-0.08 ~ -0.04 V	for NMOS HVT
=	-0.16 ~ -0.01 V	for NMOS IO
=	-0.05 ~ +0.06 V	for PMOS LVT
=	+0.01~ + 0.08 V	for PMOS HVT
=	< -0.5 ~ +0.06 V	for PMOS IO
		= -0.08 ~ -0.04 V = -0.16 ~ -0.01 V = -0.05 ~ +0.06 V = +0.01~ + 0.08 V = < -0.5 ~ +0.06 V

Summary

- Irradiation tests up to 5.5x10¹⁵ p/cm² for OKI SOI MOS transistors were performed.
- Maximum threshold shifts were found to be

 $\Delta VT = -0.13V$ for NMOS (LVT) $\Delta VT = -0.19V$ for NMOS (HVT) $\Delta VT = -0.44V$ for NMOS (IO) $\Delta VT = -0.14V$ for PMOS (LVT) $\Delta VT = -0.08V$ for PMOS (HVT) $\Delta VT > -0.5V$ for PMOS (IO)

- Minor difference (~20mV) was found in different gate length.
- Minor difference was (~9mV) found in different body tie structure
- Compensation with biasing back gate worked effective in recovery of radiation damage.