KEK Seminar 9 December 2013, Tsukuba

CMOS Image Sensors at the Rutherford Appleton Laboratory and ... a bit more

Science & Technology Facilities Council

Technology

Dr Renato Turchetta

Rutherford Appleton Laboratory (RAL) Oxfordshire, UK E-mail: renato.turchetta@stfc.ac.uk

Outline

- CMOS image sensors for science
 - Large area CMOS image sensor
 - > Achilles
 - Lassena
 - Percival
 - Ultra-high speed CMOS image sensors
 - > PImMS
 - Kirana
 - Conclusion

Science & Technology Facilities Council Technology

Science and Technology Facilities Council

UK Astronomy Technology Centre Edinburgh

Polaris House Swindon, Wiltshire

Chilbolton Observatory Stockbridge, Hampshire

Daresbury Laboratory Daresbury Science and Innovation Campus Warrington, Cheshire

Rutherford Appleton Laboratory Harwell Oxford Science and Innovation Campus

Isaac Newton Group of Telescopes La Palma

STFC in the world

STFC manage the UK contribution to large scale facilities in the world

o CERN

European Southern Observatory ESO

European Space Agency ESA

- o European Synchrotron Radiation Facility ESRF
- Institute Laue-Langevin ILL

Hexitec.

Energy resolving, pixel detector

Hexitec ASIC

•80x80 pixels

- •Energy Range: 4-200 keV
- •1mm CdTe 500V Bias
- •FWHM $_{@60keV}$ = 0.8 +/- 0.2 keV
- •(second range 12-600keV)

Hexitec. Next.

Hexitec: K-edge Transmission Imaging

Total Number of Events Per Pixel

Subtraction to remove background and leave I detail

Absorption of the I in the tubing and noise of the non-uniform background.

Multimodule, large area sensor

Large Pixelated Detector

LPD is a high speed (4.5MHz) and high dynamic range (10⁵ @ 12keV) integrating camera system.

Scalable system

3

LPD

LPD. Large Pixelated Detector

Custom ASIC in 130 nm CMOS

The LPD team during the beam test at LCLS this year

Custom DAQ. 10Gbit links

Custom S/W integrated with machine S/W

CMOS Image Sensor at RAL

Br+

Sensor size freed from reticle limitation \rightarrow up to single sensor per

Stitching.

wafer

Sensors of different sizes can be manufactured

Transmission Electron Microscopy (TEM). Prior art.

Film

Film: direct detection, very good resolution, non digital, poor S/N for weak exposure

CCD with phosphor:
indirect detection
(radiation hardness),
phosphor ruins spatial
resolution, good for
tomography

Science & Technology Facilities Council

Technology

12

CMOS Sensor for TEM

Direct detection

Good single electron sensitivity

- ➢ Good MTF and DQE
- Radiation resistant
- ➢ 4Kx4K array
- > 16 million pixels

Detection of electrons in CMOS

2510	• 478	343 1516	138 1520	
2310	1532	1835 . 138	295	4400
•		•		
	187 2830 1480	. •		
210			•	•
•			• •	

A chilles. A 16Mpixel sensor for TEM

- 61x63 mm² silicon area (4 dies per wafer)
- ➤ 0.35µm CMOS
- > 16 million pixels, 4Kx4K array
- ➤ 14 µm pixels
- ➤ 32 analogue outputs
- ➤ 40 fps
- Pixel binning 1X, 2X and 4X
- ROI readout
- ➢ 83 e− rms noise
- ➤ Full well 120ke-

- Radiation hardness of >500 million of primary electrons/pixel (>20 Mrad)
- > 20% QE for visible light

Adenovirus

Courtesy of G. McMullan (LMB, Cambridge, UK)

Structured scintillators

Mesh in a silicon wafer filled with Csl

'Artist view'

Photograph

Contrast

Scintillator	CTF at 10LP/mm
Standard A	18%
New Bv1 25um pore	70±10%
New Bv2 30.8um pore	55±5%

Scint A

Scint B

17 lpm @ 10%

All at 120kV and 3W – noise gives uncertainty to CTF (Contrast Transfer Function) values.

Wafer-scale sensor for X-ray medical imaging

Motivations

- Extra-oral dental
- \succ with tiling:
 - Mammography
 - Chest imaging
 - Security

. . .

Guidelines

- Wafer-scale sensor
- One sensor per 200 mm wafer
- > 3-side buttable \rightarrow 2xN tiling
- Radiation hard design
- Design for yield

> High resolution. 50 μ m pixel.

- ➢ High-speed. Over 30 frames per second at full resolution.
- > Low noise. 68 e- rms in full frame to give very high sensitivity.

Main features

- > 139mmx120mm and 3-side buttable for large area coverage.
- > High dynamic range. Multiple programmable integration times
- Binning x2, x4 and Region-Of-Interest (ROI) readout
- Manufactured in 180 nm CMOS Image Sensor process from

TowerJazz Semiconductor

Science & Technology Facilities Council Technology

Lassena. A 6.7Mpixel, wafer-scale sensor

		Optical performance		
		68 Full resolution mode (i.e. no binn		
Rms electronic noise	e-rms	335	Bin 2x2 mode	
		608	Bin 4x4 mode	
Linear full well	e-	112,000	Full resolution mode (i.e. no binning)	
		1,253,000	Bin 2x2 mode	
		5,012,000	Bin 4x4 mode	
Maximum full well	e-	144,000	Full resolution mode (i.e. no binning)	
		1,374,000	Bin 2x2 mode	
		5,496,000	Bin 4x4 mode	
Dynamic range (Linear)		10.7	Full resolution mode (i.e. no binning)	
	bits	11.9	Bin 2x2 mode	
		13.0	Bin 4x4 mode	
Dynamic range (Maximum)		11.0	Full resolution mode (i.e. no binning)	
	bits	12.0	Bin 2x2 mode	
		13.1	Bin 4x4 mode	
		35	Full resolution mode (i.e. no binning)	
Readout speed	frames per second	70	Bin 2x2 mode	
		140	Bin 4x4 mode	
Quantum efficiency	Measured @ 540nm	50%		
Lag		Negligible		
		Other		
Power supply	V	3.3		
Number of pads	480	All on one side		
Power Consumption (mW)	W	<2.5	CMOS only	

Pixelated Energy Resolving CMOS Imager, Versatile and Large

- Low energy X-ray detection <~ 2,000 eV</p>
- \succ High efficiency \rightarrow back-side illuminated and direct detection
- > High resolution \rightarrow 4kx4k on a 25µm pitch
- > Good single photon sensitivity \rightarrow low noise
- > High dynamic range, i.e. up to ~ $2*10^5$ photons @ 250 eV \rightarrow high
 - dynamic range (HDR) pixel --> ~120dB or full well >10 Me-
- > High frame rate \rightarrow 120 fps
- Fully digital

HDR pixel

The diode is read first, then the three capacitors It selects the lowest non saturated value

This value is sampled, as well as the reset value

Both sampled value and reset are converted

ADC conversion over 12 bits. 5 coarse plus 7 fine (plus 1 for overrange) 2 bits for gain, as selected by the decision block

Percival sensor floorplan

Preliminary specifications

- ➤ 16 MPix resolution
- > 120 fps (digital CDS)
- High dynamic range (4 gains per pixel)
- > 12+1bit ADC
- > 15 bits per pixel (2 gain bits + 13 bits)
- Digital I/O (LVDS)
- > 60 Gbit/sec continuous data rate

Time

Courtesy of M. Brouard, C. Vaillance, R. Nickerson et al., Oxford University

Science & Technology Facilities CouncilPImMS. A single particle CMOSTechnologyImage Sensor.

PImMS – Pixel Imaging Mass Spectrometry

29

PImMS pixel layout

Over 600 transistors per pixel Modified process developed with TowerJazz: deep Pimplant for 100% fill factor and true CMOS

PImMS family

PImMS1

72 by 72 pixel array

PIMMS USB camera

PImMS2

324 by 324 pixel array 70 µm x 70 µm pixel size

Time-code resolution

= 25 ns (12.5 demonstrated already on PImMS1)

4 event stored in each pixel

12 bit time-code resolution

Analogue readout of intensity information

Equivalent pixel rate for standard full frame camera

PImMS. First example of scientific results.

N⁺/Br⁺ covariance – vertical alignment

Br+

(Ultra)-High speed imaging. Applications

High-speed: 1k to 100kfps Ultra-high speed: >~ 1M fps

- Combustion Research
- Biological/Microscopy
- Ballistics
- Mechanics
- Cavitation
- Material Research
- Aerospace
- Digital Image Correlation
- > PIV

- CMOS for ease of use and readout speed
- Start from Tower 180 nm CIS process with
 - dual gate oxide: 3nm + 10nm
- Optimise process for high-speed, high
 - efficiency charge transfer
- CCD for in-pixel storage

Photodiode

Memory bank

- A vertical entry (VEN) bank with 10 cells
- Ten rows of lateral (LAT) banks, each with 16 cells
- A vertical exit (VEX) bank with 10 cells
- Total of 180 memory cells

Highly scalable architecture:

- Number of memory cells
- Number of pixels

Burst mode

Charge in the vertical exit registers is dumped in the reset node ...

... until receipt of the trigger. The status of the memory bank is then frozen and the sensor read out.

CCD drivers

Allow multiple level drivers. Signal range: $-1V \rightarrow 6V$

Shutter speed <~ 60 ns

Science & Technology Facilities Council Technology

Performance summary

Parameter	Unit	Value
Pixel pitch (X)	um	30
Pixel pitch (Y)	um	30
Pixel format (X)		924
Pixel format (Y)		768
Number of pixels		709,632
Frame rate (burst mode)	fps	5,000,000
Frame rate (continuous mode)	fps	1,180
Pixel rate (burst mode)	Pixel/sec	3.5 T
Pixel rate (continuous mode)	Pixel/sec	0.84 G
Noise	e- rms	<10 e- rms
Full well capacity	e-	11,700
Camera gain	μV/e-	80
Dynamic range		>1,170
	dB	61.4
	bit	10.2
Fill Factor		11%
Quantum efficiency	Without	2.3% (red)
	microlens	2.2% (blue)

First manufactured on standard epi: 5.5 µm thickness, low resistivity.

New, improved version made on high-res epi and microlenses just received from manufacturing

Imaging examples

70

Imaging examples

71

More CMOS image sensors developed (www.dsc.stfc.ac.uk/cmossensors)

Sensors for Alice at CERN-LHC

Single Photon Avalanche Detector (SPAD) array

Highly Miniaturised Radiation Monitor (HMRM) for ESA

Terahertz detectors

... and also

Broad span of technologies developed at STFC-RAL: detectors, ASIC, DAQ, software, mechanics, cooling, ...

Hybrid detectors: Hexitec, LPD, ...

CMOS image sensors: focus on science applications, with efficient transfer to industry

Large area sensors up to wafer-scale: Achilles for TEM in production, Lassena for medical imaging, Percival for low-energy X-ray detectors. Ultra-high speed sensors: PIMMS for mass spec, Kirana for imaging and more!

Acknowledgements

Colleagues at the Rutherford Appleton Laboratory:

- J. Crooks, D. Das, N. Guerrini, B. Marsh, I. Sedgwick, V. Sooden, B. Velagapudi,
- M. Hart, M. French, P. Seller, M. Wilson, V. Perera, P. Booker, ...

and at collaborating institutes:

R. Henderson, G. McMullan, W. Faruqi (Laboratory of Molecular Biology, Cambridge)

- G. van Hoften (FEI)
- M. Brouard, C. Vaillance, R. Nickerson et al. (Oxford University)
- W. Chan, K. Taylor (Specialised Imaging)
- A. Fenigstein, A. Lahav (TowerJazz Semiconductor)

www.dsc.stfc.ac.uk/cmossensors

See also

. . .

Questions?

www.dsc.stfc.ac.uk/cmossensors