X線天文用 SOI ピクセル検出器の 大面積化とイベント駆動読み出しの評価

宇宙線研究室 林秀輝

次世代 X 線天文衛星「FORCE」

ブラックホール、中性子星、超新星残骸など の多くの天体が X 線で輝く

広帯域 (0.5-80 keV) かつ高感度 (3 × 10⁻¹⁵ erg cm⁻² s⁻¹) な X 線観測を実現する次世代 X 線天文衛星「FORCE」計画を推進

「すざく」搭載 X 線 CCD の 非 X 線バックグラウンド (NXB) スペクトル

「すざく」搭載 X 線 CCD の 非 X 線バックグラウンド (NXB) スペクトル

「すざく」搭載 X 線 CCD の 非 X 線バックグラウンド (NXB) スペクトル

天体からのX線

宇宙線到来頻度 ~ 10 kHz

「すざく」搭載 X 線 CCD の 非 X 線バックグラウンド (NXB) スペクトル

天体からのX線

宇宙線到来頻度 ~ 10 kHz

X線 CCD の時間分解能~ sec では、反同時計数法を 用いることができない

「すざく」搭載 X 線 CCD の 非 X 線バックグラウンド (NXB) スペクトル

天体からのX線

宇宙線到来頻度 ~ 10 kHz

X線 CCD の時間分解能~ sec では、反同時計数法を 用いることができない

時間分解能が良い (< 10 µs) 新しいセンサーが必要 →「XRPIX」の開発

FORCE 搭載に向けた XRPIX の開発

XRPIX	観測帯域	時間分解能	イメージング エリア	分光性能
要求性能値	0.5-20 keV	10 µs	20 × 20 mm ²	300 eV (FWHM) @ 6 keV

FORCE 搭載に向けた XRPIX の開発

XRPIX	観測帯域	時間分解能	イメージング エリア	分光性能
要求性能値	0.5-20 keV	10 µs	20 × 20 mm ²	300 eV (FWHM) @ 6 keV

FORCE 搭載に向けた XRPIX の開発

XRPIX	観測帯域	時間分解能	イメージング エリア	分光性能
要求性能値	0.5-20 keV	10 µs	20 × 20 mm ²	300 eV (FWHM) @ 6 keV

大面積素子「XRPIX5b」の開発

これまでの素子の 典型サイズ ピクセル数 32×32

これまでの素子をベースに 大面積素子を開発

大面積にしたことにより生じうる 課題を見つけ出すことが今回の目的

- ◆ 大面積の全領域で正常に信号の 読み出しができるか
- **◆ 小さい素子と同等の性能を出せるか**
- **◆ 領域ごとに性能のばらつきがないか** をフレーム読み出しで評価した

XRPIX5b の全面で フレーム読み出しによる X線スペクトルの取得に成功

XRPIX5b の全面で フレーム読み出しによる X線スペクトルの取得に成功

XRPIX5b の全面で フレーム読み出しによる X線スペクトルの取得に成功

XRPIX5b の全面で フレーム読み出しによる X線スペクトルの取得に成功

XRPIX5b の全面で フレーム読み出しによる X線スペクトルの取得に成功

読み出し口から遠いほど ゲインが小さい

→ 配線抵抗による 電圧降下が効いている

読み出し口から遠いほど ゲインが小さい

→ 配線抵抗による 電圧降下が効いている

Gain Distribution

読み出し口から遠いほど ゲインが小さい

→ 配線抵抗による 電圧降下が効いている

Gain Distribution

大面積化に関して 今のところ問題はない

XRPIX5b イベント駆動読み出し イメージ取得

XRPIX5b イベント駆動読み出し イメージ取得

XRPIX5b イベント駆動読み出し イメージ取得

正確にヒットタイミングとヒットアドレスを出力している

XRPIX5b イベント駆動スペクトルの問題

XRPIX5b イベント駆動スペクトルの問題

XRPIX5b イベント駆動スペクトルの問題

中間 Si の電位を固定し、 静電シールドとして機能させる (Ohmura+2016)

→ 回路層とセンスノードとの 干渉を抑える

XRPIX6D イベント駆動読み出し X線スペクトル

241Am X線スペクトル

イベント駆動読み出しで各X線の輝線を分離することに成功

XRPIX6D イベント駆動読み出し X線スペクトル

241Am X線スペクトル

イベント駆動読み出しで各X線の輝線を分離することに成功

Double SOI により回路層とセンスノードとの 干渉が抑えられたことを示唆している

X線スペクトル バックバイアス電圧 (V_b) 依存性

X線スペクトル バックバイアス電圧 (Vb) 依存性

X線スペクトル バックバイアス電圧 (V_b) 依存性

フレーム読み出し

フレーム読み出しとイベント駆動読み出しでは トリガー回路を用いるか用いないかの違いだけでなく、 シャッターを閉じるタイミングも異なる

X線スペクトル バックバイアス電圧 (V_b) 依存性

X線スペクトル バックバイアス電圧 (V_b) 依存性

フレーム読み出し

⁵⁷Co X線スペクトル (V_b = −400 V)

57Co X線スペクトル ($V_b = -400$ V)

57Co X線スペクトル (V_b = -400 V)

電荷収集時間が速い成分と遅い成分の2種類が存在する

57Co X線スペクトル (V_b = -400 V)

電荷収集時間依存性

電荷収集時間が速い成分と遅い成分の2種類が存在する 絶縁層とセンサー層との間の界面のトラップ準位での トラップ・デトラップが原因ではないか

イベント駆動・フレーム読み出し スペクトル比較

イベント駆動読み出しの分光性能がフレーム読み出しに迫っている

イベント駆動・フレーム読み出し スペクトル比較

イベント駆動読み出しの分光性能がフレーム読み出しに迫っている

FORCE 搭載に向けて大幅に性能を向上させた (FORCE の分光性能の要求値 300 eV (FWHM) @ 6 keV)

まとめ

- ◆ FORCE 搭載に向けて、XRPIX を開発しており、「イベント駆動読み出し」により、~ 10 µs の時間分解能を実現する。
- ◆ 大面積素子である XRPIX5b の全面でフレーム読み出しによる X 線スペクトル取得に成功し、領域ごとの性能差がほぼないことも確認した。
- ◆ XRPIX5b でイベント駆動読み出しによる X 線イメージの取得に成功。
- ◆ イベント駆動読み出しでの X 線スペクトルの問題は、Double SOI 構造 の導入により解決した。
- XRPIX6D で FORCE の要求性能値に迫る 346 ± 11 eV (FWHM)
 @ 6.4 keV のエネルギー分解能をイベント駆動読み出しで達成。

Back up

速さが異なる2成分の電荷収集の解釈

絶縁層とセンサー層との間の界面のトラップ準位での 信号電荷のトラップ・デトラップが原因で 電荷収集時間が遅くなっているのではないかと考えている

ピクセル境界での電荷損失

中性領域

XRPIX5b イベント駆動 スペクトル異常の原因

コンパレータの論理の反転が 影響を与えることで アナログ信号電圧が トリガー閾値電圧に張り付く

イベント駆動の流れ

次世代 X 線天文衛星「FORCE」

埋もれた活動銀河核

2-10 keV 帯域での活動銀河核 (AGN) の 空間数密度の赤方偏移依存性 (Ueda+2014)

塵やガスに埋もれた AGN の「すざく」による X 線スペクトル (Ueda+2007)

超巨大ブラックホールの形成過程

 $10^6-10^9 M_{\odot}$ の超巨大質量ブラックホールはいかに形成されたか? \rightarrow 活動銀河核 (AGN)

2-10 keV 帯域での AGN の 空間数密度の赤方偏移依存性 (Ueda+2014)

「ダウンサイジング」現象

しかし、塵やガスに深く埋もれた AGN は 右図には含まれていない

