第1回測定器開発・優秀修士論文賞 受賞記念講演 レーザー干渉型電子ビームサイズモニタ 山口洋平 東大理 駒宮研 2011年9月19日

極小ビーム

- linear colliderではluminosityを上げるために、衝突点 (IP)
 でビームサイズをしぼることが重要
- luminosity (L):ビームの衝突頻度

$$L = \frac{n_b N^2 f_{rep}}{4\pi\sigma_x \sigma_y} H_D$$

 n_b : number of bunches f_{rep} : repetition rate N: number of particles per bunch σ_y : vertical beam size σ_x : horizontal beam size H_D : disruption parameter

例えばILCでは5.8 nmまでσ_yをしぼることを計画 (SB2009) そのため<mark>規格化エミッタンス35 nm・radという、</mark>高品質ビームが必要

ATF/ATF2: 先端加速器実験施設

- Linac: 電子ビームエネルギー1.3 GeV
- Damping Ring
 - 規格化鉛直エミッタンス28 nm・rad
 - ILCでの規格化エミッタンス35 nm・rad

- Final Focus
 - 局所色収差補正
 - 37 nmの鉛直ビームサイズ
 - nmレベルのビーム安定化

ビームサイズモニタ

・ 例:ワイヤスキャナ

- 極小ビームサイズを測るには??
 - ワイヤスキャナ
 - 1 μm程度が測定下限 焼き切れる (current~10⁹ [ptohons] を想定)
 - レーザーワイヤ
 - 回折限界により、波長程度がリミット

測定下限を下げる一つの解: ターゲットの構造を小さくする

- レーザーを干渉させ、スポットサイズよりずっと細かい干渉縞を形成
- 通称「新竹モニタ」
- SLACのFFTBで、70 nm程度
 のビームサイズ測定に成功

σ = 50 nmのガウシアン

比較:

新竹モニタ@ATF2

- 1. ビームに対して干渉縞の位相をスキャン
- 2. 位相に対して散乱Comptonシグナルが変調
- 3. 変調の大きさはビームサイズに関係

セットアップ

174,30,2-8度の交差角を用意

レーザー交差角と測定感度領域

Modulation Depth

交差角 [degree]	ピッチ [nm]
2	1.52×10^4
8	3.81 x 10 ³
30	1030
174	266

最も分解能が出るのは、ビームサイズ がピッチの1/5程度の場合

各交差角モードでのσ_vとMの関係 2deg. mode 4deg. mode 8deg. mode 30deg. mode 0.8 174deg. mode 0.6 0.4 0.2 C 10² 10^{3} 10⁴ 10 Beam Size [nm] 太線:測定感度領域 25 nm – 6 µmまでの広い領域をカバー

レーザー、ガンマ線検出器

大強度QスイッチNd:YAGレーザー

多層Csl(Tl) ガンマ線検出器

詳細はジャクリンヤン (17aSH) より

error source	M変化@300 nm [%]	M変化@37 nm [%]*
レーザー偏光・強度	97.8 ± 1.8	99.8 ± 0.1
レーザーアライメント	> 99.1	> 99.1
(long.)		
レーザーアライメント	> 99.6	> 99.6
(trans.)		
レーザー時間コヒーレント	> 99.9	> 99.9
相対位置ジッター	~ 100	> 98.0
干涉縞 tilt (long.)	> 99.9	> 99.9
干涉縞 tilt (trans.)	> 98.2	99.3 – 99.6
レーザー球面波	100	> 99.7
beam size growth	100	> 99.7
total	93.8 – 99.6	95.0 – 99.5

* ハードウェアアップグレード後の値

バイアス

ex.) 干渉縞のコントラスト悪化

Modulation depthが小さく評価される \rightarrow ビームサイズが実際より大きく評価される

コントラスト

電子ビームは相対論的な速度で飛んでいるため、レーザーの磁場によるLorentzカの 影響を無視できない

電子静止系にLorentz boostすれば、そこでの磁場は無視できる したがって、 干渉縞コントラスト = (電子静止系での)電場強度のコントラスト

偏光とコントラスト

今後重要となるバイアス要因

例:レーザー球面波

レーザーは基本ガウシアンモード

→波面は球面

焦点から離れると球面の曲率がきつくなり、電子ビームは「歪んだ」干渉縞を感じる

Status & Plan

- 地震からの復旧中
- Modulation depthの小さい領域の測定の改良が必要
- ハードウェアアップグレード
 - レーザー安定化
 - コリメータ追加によるBG radiationのカット

– etc..

 10月からのRunで地震前の状態を取り戻し、 σ_y < 100 nmを 目指す

• 詳細はジャクリンヤン (17aSH) より

謝辞

- 研究に当たってお世話になりました、
- 駒宮幸男教授、神谷好郎助教
- KEKの田内先生、照沼先生、奥木先生、黒田先生、久保先 生、荒木先生、本田さん
- 駒宮研究室の大録さん、山中さん、ジャクリンヤンさん、園田さん、市川さん、南君
- 同研究室OBの末原さん、久松さん、大川さん、川崎さん、 飯山君
- に感謝いたします。

back up

FFTBからの変更点

Q-switched Nd:YAG Laser		
PRO350 (Spectra Physics)		
波長	532 nm (2倍高調波)	
線幅 (FWHM)	< 0.003 cm ⁻¹	
繰り返し周波数	6.25 Hz	
パルス幅 (FWHM)	8 ns	
タイミングジッター (RMS)	< 1 ns	
ピークパワー	164 MW	

困難: 高エネルギーBG

・ シグナルエネルギー
 ~15 MeV/photon (av.)

解決策

- CsI(TI)多層シンチレータ
- ・ 薄い4 layer + 1 bulk
- シャワー発展の情報を取得

1. 高いシグナル・BG分離能

2. スキャン時間を半分に短縮

シグナルシャワー

2011/9/19

BGシャワー

Goos-Hänchen shift

電磁波の全反射においてs偏光とp偏光の位相差が生じる現象 全反射において反射面に"潜り込む"エバネッセント波によって起きる

ATFにおける新竹モニタでは、ダブプリズムという 光学素子でレーザーを全反射させている

ここでGoos-Hänchen shiftが起きる

ガンマ線検出器 シグナル・BG分離能

ガンマ線検出器はエネルギー分解能は十分よいが、シャワー発展の揺らぎが大きいので シグナルとBGの分離能が悪化する

2011/9/19

偏光とコントラスト

ATF2の新竹モニタでは、sの直線偏光を採用

p偏光成分が存在すると、

偏光状態のミスアライメントによるコントラスト変化

 $C_{pol.} = 97.8 \pm 12.8 \tan \theta \pm 0.1 \%$

大強度レーザー用偏光板による改良が必要