大面積・高時間分解能 Resistive Plate Chamber の開発

京都大学 原子核ハドロン研究室 D1 冨田夏希

日本物理学会2012年秋季大会 2012年9月13日

大面積・高時間分解能 Resistive Plate Chamber の開発

- Resistive Plate Chamberについて
- LEPS2の紹介とLEPS2での要求性能

もくじ

- Resistive Plate Chamberの製作
- LEPSでのビームテスト
- テスト結果
- まとめ
- 修論後の進展

- 高抵抗板の間(ギャップ)で電子を増幅
- 最外層の読み出しパッドに信号を誘起

磁場中で使用化

低いコスト高い時間分解能

・ 高抵抗板 → 放電を避ける

・ 狭いギャップ

→ドリフト時間のばらつき小 → 高時間分解能
 複数のギャップ → 十分な検出効率、高時間分解能

• e⁻>10⁸ 紫外線

ストリーマーモード

- Arガス
- ギャップ幅 ~2 mm
- シングルギャップ
- 信号 <mark>大</mark> (数10 mV) (アンプ不要)
- 時間分解能 ~1 ns
- レート耐性 ~Hz/cm²
 - ミューオントリガー

宇宙線 Belle, Babar, OPERA,... • e⁻ < 10⁷ <

オペレーションモード

フロンガス(高電気陰性度)

アバランシェモード

- ギャップ幅 200-300 µm
- マルチギャップ
- 信号小(数mV)
 (アンプ必要)
- 時間分解能 ~50 ps
- レート耐性 ~kHz/cm²
 - TOF Multigap RPC, Timing RPC ALICE, STAR, FOPI,... 日本国内で使用例なし

LEPS2

Laser Electron Photon experiment at SPring-8

LEPS2でのRPCの要求性能

Resistive Plate Chamberの製作

Resistive Plate Chamber の製作

製作失敗談

ビームテスト

ビームテスト

Signal

Gas 電子の増幅を抑える フロン (R134a): 90% SF6:5% イソブタン:5%

Amp

KN2104 PMT amplifier Kaizu works Input 50 Ω 500 MHz / Gain 5

アンプ使用 (ゲイン4倍)

<u> 立ち上がり~2 ns</u>

タイムウォーク補正

測定項目

1.7

ギャップ幅依存性

パッドサイズ依存性

面積の増加とともに、時間分解能・検出効率ともに悪化 読み出しラインまでの経路差により時間分解能悪化

- LEPS2実験で使用する大面積・高時間分解能の Resistive Plate Chamber を開発
- ギャップ幅・・・ 148 μm と 260 μm で分解能違いなし
 148 μmは両読みでは検出効率足りない

 ギャップ数・・・増加で高い時間分解能 148µm * 24 gaps → 40 ps

• 大面積パッド・・・ストリップ型が適している

2.5 cm * 40 cm (260 μ m * 12 gaps) \rightarrow 60 ps / 99 %

LEPS2の開発目標 (> 50 cm²/channel, <50 ps, >99 %) をほぼ満たす

波形

2.5 cm*108 cm

インピーダンス ストリップ 5 Ω ? アンプ 50Ω

11ns/216cm ~ 5.5ns/108cm ~ 50ps/cm

まとめ読み

2.5cm × 108 cmのストリップを2つまとめてアンプへ

HARP RPCなどで実績あり

2.5 cm × 108 cmストリップ2つまとめ読み LEPS2で200ch相当(270 cm²/ch) までチャンネル数を削減

まとめ

- ストリップ長さ・・・100cmまで伸ばしても 時間分解能・検出効率は劣化しない • まとめ読み・・・2つのストリップはまとめ読みできる 270 cm²/ch (200ch相当) で60ps/99%達成 (ストリップ上) ・読み出し回路 アンプ・・・インピーダンスマッチしたものを開発中 (台湾 Academia Sinica) HADES RPCのものも試す • TDC•••CAEN VME V1290を使用予定(トリガー~10kHz) 今後 • ストリップ間を狭く/シフトしたものをテスト(10月)
 - 2013年LEPS2ヘインストール予定

謝辞

- LEPS/LEPS2の皆様
- Chia-Yu Hsieh さん、野沢勇樹くん、
 橋本敏和くん、水谷圭吾くん、濱野博友くん
- 永江知文教授はじめ原子核ハドロン研究室の皆様
 修士論文賞の審査員の皆様
- 理化学研究所の大西宏明研究員
- 指導教員の新山雅之助教

お世話になりましたありがとうございました

おわりに

RPCはまだまだ可能性が・・・

- ストリップ中の信号の伝搬
- 高時間分解能
- 高レート耐性(~10kHz/cm²)
- トラッカー(σ~数10μm)
- カロリメーター
- 中性子カウンター

ご清聴ありがとうございました

Back Up

時間分解能の内訳

読み出し回路

アンプ+ディスクリ

- インピーダンスマッチしたものを開発中
- HADES RPCで使用されているものもテスト予定

TDC

- V1290A (CAEN製VME)
 - 高トリガーレート(10kHz)
 - Leading/Trailing edge両方読める
 - パルスハイト測定にTime-Over-Threshold法の使用

時間分解能 40ps ⇔ 18ps GNC-040 (CAMAC)

→ 分解能 60 ps → 70 ps

70 ps 2層で 50 ps (V70/2 = 50)

幅を広げるのは難しい

レート依存性

148 µm*12 gaps Small pad

200 Hz/cm²までのレート耐性を確認

ガス・レート依存性

260 µm*10 gaps Iso-butane/Butaneで大きな差なし

主なRPC

Group	Pad size	Gap width	Gaps	Stacks	Resolution	Effciency
ALICE[8]	$2.4~\mathrm{cm}$ \times 3.7 cm	$250~\mu{\rm m}$	5	2	$< 50 \mathrm{\ ps}$	>99~%
STAR[7]	$3.15~\mathrm{cm}$ \times 6.3 cm	$220~\mu{\rm m}$	6	1	$60 \mathrm{\ ps}$	> 97 %
FOPI[25]	0.194 cm \times 90 cm	$220~\mu{\rm m}$	4	2	$60 \mathrm{\ ps}$	> 99~%
HARP[26]	$2.9~\mathrm{cm}$ \times 10.4 cm	$300 \ \mu { m m}$	2	2	130 ps	$97 \sim 98 \%$

表 2.1: 主な実験で使用されている TOF 用 RPC

Group	Pad size	Gap width	Gaps	Stacks	Resolution	Effciency
[19]	$5~{ m cm}$ $ imes$ 1.6 m	$300~\mu{ m m}$	4	1	$50{\sim}75~\mathrm{ps}$	95 %
[20]	$2.5~{\rm cm}$ \times 1.8 m	$300~\mu{ m m}$	5	1	$65{\sim}85 \text{ ps}$	$\sim 95~\%$
[22]	$2.5~{\rm cm}$ \times 31 cm	$300~\mu{ m m}$	3	2	$45 \mathrm{\ ps}$	> 98 %
[23]	$2.5~{\rm cm}$ \times 90 cm	$250 \; \mu \mathrm{m}$	5	2	$60{\sim}70~\mathrm{ps}$	>95~%
[11]	$3.0~{ m cm}$ $ imes$ $85~{ m cm}$	$220 \; \mu \mathrm{m}$	6	2	$80 \mathrm{\ ps}$	> 90 %

表 2.2: 主なストリップ型大面積パッドの RPC

位置依存性

ギャップ数依存性

ギャップ数依存性

Efficiency

$Eff(N) = 1 - (1 - Eff(1))^{N}$

PMT Amp

0 2 **0** 0 <u>0 3 0-0</u> 040-0 0.00 0.00 <u>0 7 0 0</u> 0.0 <u>0 9 0 0</u> 0.00 0100 01200 KN2104

NIMモジュール Kaizu Works 製 KN2104型アンプ 入力インピーダンス 50Ω 最高繰り返し周波数 850MHz 500 MHz / 増幅率5倍

24ギャップ

釣り糸

号数	標準直径
0.1号	0.053mm
0.2 号	0.074mm
0.3 号	0.090mm
0.4号	$0.104 \mathrm{mm}$
0.5 号	$0.117 \mathrm{mm}$
0.6号	$0.128 \mathrm{mm}$
0.8号	$0.148 \mathrm{mm}$
1号	$0.165 \mathrm{mm}$
1.2 号	$0.185 \mathrm{mm}$
1.5 号	$0.205 \mathrm{mm}$
2号	$0.235 \mathrm{mm}$
2.5 号	$0.260 \mathrm{mm}$
3号	$0.285 \mathrm{mm}$
3.5 号	$0.310 \mathrm{mm}$
4号	$0.330 \mathrm{mm}$
5号	0.370mm
6号	$0.405 \mathrm{mm}$
7号	$0.435 \mathrm{mm}$
8号	0.470mm
10号	$0.520 \mathrm{mm}$

表 3.1: 日本で販売されている釣り糸の直径一覧

物質量

ガラス

Plate glass

Quantity	Value	Units	Value	Units
< Z/A>	0.49731			
Density	2.40	g cm ⁻³		
Mean excitation energy	145.4	eV		
Minimum ionization	1.684	MeV g ⁻¹ cm ²	4.040	MeV cm ⁻¹
Nuclear collision length	66.1	g cm ⁻²	27.53	cm
Nuclear interaction length	99.6	g cm ⁻²	41.50	cm
Pion collision length	92.7	g cm ⁻²	38.63	cm
Pion interaction length	130.5	g cm ⁻²	54.36	cm
Radiation length	25.66	g cm ⁻²	10.69	cm
<u>Critical energy</u>	47.48	MeV (for e ⁻)	46.14	MeV (for e ⁺)
Molière radius	11.46	g cm ⁻²	4.775	cm
Plasma energy $\hbar\omega_p$	31.48	eV		
Muon critical energy	671.	GeV		

ポリエチ

Polyethylene ($[CH_2CH_2]_n$)

Quantity	Value	Units	Value	Units
< Z/A	0.57034			
Density	0.890	g cm ⁻³		
Mean excitation energy	57.4	eV		
Minimum ionization	2.079	MeV g ⁻¹ cm ²	1.850	MeV cm ⁻¹
Nuclear collision length	56.1	g cm ⁻²	63.05	cm
Nuclear interaction length	78.5	g cm ⁻²	88.18	cm
Pion collision length	83.7	g cm ⁻²	94.07	cm
Pion interaction length	110.4	g cm ⁻²	124.0	cm
Radiation length	44.77	g cm ⁻²	50.31	cm
<u>Critical energy</u>	101.79	MeV (for e ⁻)	99.13	MeV (for e ⁺)
Molière radius	9.33	g cm ⁻²	10.48	cm
Plasma energy $\hbar\omega_p$	20.53	eV		
Muon critical energy	1282.	GeV		

5gaps 2.4mm

RPC 5gap ~ sinti 1 cm

ALICE TDR

コスト

100cm×23cm 3台

- ガラス 1枚~3000円
- 印刷基板 1枚~3000円
- カーボン電極 1枚~6000円(開発費込)
- 10gaps 2.5cm*100cm 8strips -> ~50000円
- 製作費 学生が頑張る
- チェンバー ~50000円 なしにもできる

読み出しライン位置依存性

148um * 12gaps

Pad	Resolution	Efficiency
B1	$65 \pm 3 \text{ ps}$	$99.4 \pm 0.2 \%$
B2	$74 \pm 2 \text{ ps}$	$99.0\pm0.2~\%$
B3	$65 \pm 2 \text{ ps}$	$99.6\pm0.1~\%$
B4	$78 \pm 2 \text{ ps}$	96.5 ± 0.3 %
B5	$84 \pm 2 \text{ ps}$	$98.0\pm0.2~\%$
C1	$85 \pm 3 \text{ ps}$	$97.3 \pm 0.3 \%$
C2	$77 \pm 2 \text{ ps}$	$97.3 \pm 0.3 \%$

C1 C2

• Trigger (1cm * 2cm) at the center of pad