2010年5月19日(水)13:30 KEK3号館425室

放射光核共鳴散乱法による 物質科学研究

京都大学原子炉実験所 瀬戸 誠

なぜ原子核、放射光? ◆原子核の励起状態の特徴 ⇒超高分解能(Δ*E/E*) ⇒原子系(電子系)とは異なる線幅(エネルギー)、 寿命(時間スケール) ◆元素(同位体)を特定した測定 ◆放射光の特性 ⇒ 高輝度特性(微小試料測定、超高圧下測定-10GPa を超える量子相転移を研究できる唯一の測定法) ⇒ <u>高指向性</u>(全反射-ナノマテリアル、準弾性散乱の 運動量依存性)

原子核励起状態 (⁵⁷Feエネルギー準位図)

原子核励起状態 (⁶⁷Znエネルギー準位図)

重力による赤方偏移

[l = 1 m]実験値 $\Delta E/E = 1.4 \times 10^{-18} +$ $(1.135 \times 10^{-16}) \cos \phi$ 理論値: $\Delta E/E =$ $(1.107 \times 10^{-16}) \cos \phi$

重力による93.3 keV γ線の 振動数変化の角度依存性

核共鳴散乱を利用した準弾性散乱測定

1-Butyl-3-methylimidazolium Iodide ($C_8H_{15}IN_2$) 1-ブチル-3-メチルイミダゾリウム ヨージド

核共鳴散乱(メスバウアー効果)の観 測された元素

1 H		Observed													2 He		
3	4											5	6	7 N	8	9	10 No
11	12											12	14	15	16	17	10
Na	Mg											AI	Si	P	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88		104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

原子核を用いた電子状態の測定-超微細相互作用-

原子核を用いた電子状態の測定

同じ元素でも同位体を特定部分にエンリッチすることで、 必要な場所のみの測定が可能となる

多層膜の特性を乱すことなく、必要な層についての 電子状態の計測が可能

Fe系高温超伝導化合物 の研究

新規に発見されたFe系超伝導体(max *T_c* ~ 55K)が大きな注目を集めている。

*ペアレントのノンドープ試料(超伝導を示さない:低温でSDW)に対して、フッ素ドープにより超伝導が発現

큵

Cu系高温超伝導体と同様な超伝導発現機構?磁性の関与は?

*磁性と超伝導との共存?

構成元素(希土類とFe)のサイトを特定した電 子構造・磁性の測定 *Fe系超伝導体の超伝導発現機構は? (BCSフォノン機構 or NOT?)

放射光の利用:量子ワイヤー試料

SEM像

量子ワイヤーの電子状態測定 -測定スペクト

フォノン励起・吸収と無反跳核共鳴散乱

M. Seto et al., Phys. Rev. Lett. 74, 3828(1995).

Fe系高温超伝導体のFeフォノン

LaFeAsO_{0.89}F_{0.11} (超伝導: T_c= 26 K) フォノンを媒介としたBCS超伝導体 であるかどうか ◆フェルミ面はほぼFeのd軌道 超伝導にFeが大きく寄与 \Rightarrow Feのフォノン状態密度のみを観測 可能!

AI中における希薄Fe原子のフォノン状態密

パルス放射光による核共鳴散乱の検出

◆電子散乱は瞬間的に起こる

◆原子核の共鳴励起の場合には、原子核の寿命程度の時間に渡って散乱が観測される

時間遅れ成分の検出!

電子状態測定 –励起原子核からの放射–

電子状態測定 -分裂した準位の場合-

エネルギー領域放射光メスバウアー分光法

トランスデューサーの速度に対する時間遅れ 成分をスケーラで計測する