

MPPC and Liquid Xenon technologies from particle physics to medical imaging

Fabrice Retière TRIUMF

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

> Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Outline

Positron Emission Tomography

PET imaging

- PET is a functional imaging technique
 - Image biological processes
 - Tracer are design to target specific processes (e.g. tumors)
- PET does not necessarily show anatomical feature
 - The better the tracer the fewer additional features
 - Need an additional imaging technique (MRI, CT)

Blurring in PET

- Random combinations
 - Reduced by timing resolution

Scatter (Compton interactions in patient)

- Reduced by good energy resolution
- Position resolution
 - Depth of interaction
 - Need new techniques
- Compton interactions in detector
 - Reduced by higher atomic Z
- Statistics!!!
 - Image reconstructed by combining many lines of response
 - Time of flight would help

Requirement for PET Energy resolution

- Important for removing scatters
 - Energy lost in scatters implies lower energy
 - 4% FWHM resolution is typically sufficient for removing all scatters
- Randoms are often scatter and are hence also reduced
- Energy resolution is critical for Compton reconstruction if multiple interactions are to be reconstructed

A typical micro-PET detector Siemens Focus 120

Features	Focus 120	
Detector diameter	15 cm	
Bore size	12 cm	
Axial field of view	7.6 cm	
Number of detector blocks	96	
Number of LSO elements	13,824	
LSO element size	1.6x1.6 mm ²	
Performances	Focus 120	
Peak sensitivity	>7%	
Resolution at center of FOV	<1.4mm	
Average energy resolution	18%	

State of the art: clearPEM

- ClearPE^{16.2 cm}. State of the art PEM
 - Very good 3D resolution
 - High sensitivity
 - Complex: 12,000 avalanche photodiodes and associated electronics
 - MPPCs could easily replace APDs

Nucl. Instrum. And meth. Volume 571, Issues 1-2, (2007), Pages 81-84

Reducing complexity by optical multiplexing

- R&D by UC Davis group using Wavelength shifting bars
 - 2×2×20 mm³ LYSO crystals
 - $-2 \times 2 \times 20$ mm³ WLS bars

H. Du, Y. Yang, and S. Cherry Phys. Med. Biol. **53 (2008) 1829–1842**

- Large prototype by AXPET collaboration
 - 3×3×100 mm³ LYSO crystals
 - 0.9×3×40 mm³ WLS bars
 - Detector being tested

https://twiki.cern.ch/twiki/bin/view/AXIALPET/WebHome

An optical multiplexer: The Fine Grained Detector

- Two detectors
 - 15 XY layers (192 bars)
 - 7 XY layers + 7 water panels
- 8448 channels

T2K Multi-Pixel Photon Counter

- A type of Pixelated Photon Detector (PPD) made by Hamamatsu Photonics
- Main features
 - High gain (10⁶)
 - 1.3x1.3 mm² active area
 - 667 50 µm pixels
 - Photon detection efficiency ~ 30%
 - Insensitive to magnetic field
 - Pixelated: 1 pixel = 1 photon (or multiple photons)

Characterization of T2K MPPCs

- Gain
 - Including fluctuations
- Dark noise
- After-pulsing
- Cross-talk
- Recovery
- Saturation

MPPC nuisances

MPPC recovery and saturation

Using MPPCs from T2K to PET

Features and drawbacks	Т2К	PET
Insensitivity to magnetic field	Yes	Yes, with MRI
High photon detection efficiency	Yes	Yes
High gain	Yes	Yes (simplify electronics)
Fast rise time	No	Yes
Saturation	Not a big issue	May affect resolution
Small active area	Not an issue	May be an issue
Dark noise	Small enough	Depend on area
After-pulsing	Small enough	?
Cross-talk	Small enough	?

MPPC are a good match to small (1x1 to 3x3 mm2) LSO crystals.

New PET detector are being designed with MPPCs, lots of MPPCs...

Reading out a monolithic LSO crystal with WLS bars and MPPCs

- Goals
 - Position resolution < 2 mm (FHWM) in every dimension
 - Energy resolution < 20% (FHWM)
 - Timing resolution < 3 ns (FWHM)
- Concept
 - Large LSO crystal: 144×144×20 mm³
 - Light transported to the side by Wavelength shifting bars or clear light guides
 - Dimension: 3×3×150 mm³
 - 48 bars per side
 - 96 channels per module compare to 12,000 for clearPEM!
 - Readout by 3×3 mm² MPPCs

Using wavelength shifting bar to reduce the number of channel

- 16,500 blue photons are emitted by a 511 keV photon in a LSO crystal
- Some blue photons are absorbed in wavelength shifting bars at the top and bottom
 - The WLS bar reemitted green photons
 - A small fraction of the photons is trapped in the bar and travel to the end to be detected

Position reconstruction

- Along crystal transverse directions: "weighted mean"
- Along crystal depth: light spread
 - Limited by angle of total reflection: ~50 degree with optical gel, ~30 degree with air gap

- Keys to good resolution
 - Light collection > 5%
 - Noise < 0.1 photo-electron</p>
 - Possible with MPPCs

Photon collection: key to good performances

- Photon propagation in LSO and LSO-WLS reemission well understood
- Main issue is reflection efficiency along the edges of the fibers
- For this concept to work need > 100 photons
 - > 97% reflection effiency

MPPC

Light collection (simulations)

Position resolution (simulations)

21

Prototype

- Building a prototype in summer 2010
- Test in fall 2010
- 6 by 6 WLS bars
 - Readout alternatively on either side
 - Need 12 MPPCs
- 1.8x1.8x1.2 cm² LSO crystal
- We will know if this concept is sound

Light spread for different positions

From LSO to liquid Xenon

Liquid Xenon is a good scintillator

Parameter	BGO	LSO	LXe	Comment
Attenuation length at 511 keV	11 mm	12 mm	36 mm	Required depth ≥ 10 cm
Photo-electric fraction	42%	33%	22%	Require handling Compton interactions
# Photons at 511 keV	3,300	16,400	12,000 (2kV/cm)	
Decay time	300 ns	40 ns	2 ns (97%) 27 ns (2%)	< 1ns timing resolution possible in principle
Peak wavelength	480 nm	420 nm	178 nm	Require special photo- sensors

And, an excellent ionization detector

Liquid Xenon for microPET A breakthrough technology?

- Achieving ultimate performances at low cost?
- Used for physics experiments for example dark matter search
- Key advantage is to combine high Z material with the ability to detect scintillation light and ionization charge at the same time

Allow the best of both world

microPET detector concept

Liquid Xenon detector specifications

Features	Focus 120	Liquid Xenon
Detector diameter	15 cm	12 cm
Bore size	12 cm	10 cm
Axial field of view	7.6 cm	8 cm
Number of detector blocks	96	12
Number of readout elements	13,824	~3,000
Element size	1.6x1.6x20 mm ²	1x1x1 mm ³
Performances	Focus 120	Liquid Xenon
Peak sensitivity	>7%	>10%
Resolution at center of FOV	<1.4mm	< 1mm
Average energy resolution	18%	10%

Micro-PET concept

First prototype to investigate energy resolution

- 4% (sigma) has been measured
- Build a test chamber to investigate energy resolution
 - Use APD
 - Use Time Projection
 Chamber configuration

Energy resolution

- Before combining resolution dominated by recombination fluctuations
- After combination main source of fluctuations:
 - Electronic noise on electrode (ionization)
 - 2.7%
 - APD gain fluctuation
 - 2.7%

Second prototype. Full scale detector

- Operated from fall 2009
- Few issues
 - Achieving required purity has been a challenge
 - Signal to noise on APD is border line

Such chamber can be used to measure cosmic rays

Position resolution from cosmics

Detecting 511 keV photons

Two issues with prototype

- Purity
 - So far purity not goo enough
 - Carbon particle from carbon loaded kapton

- Electronics noise
 - Collect 15,000 20,000
 e- at 511 keV
 - Requirement, noise ~ 15 keV
 - Equivalent noise charge = 600 e-
 - Not so well defined over what frequency
 - Pick up noise can be a serious issue

Dealing with Compton interactions

- The 1st interaction in Xenon is a Compton 78% of the time
 - Distance between the 1st and 2nd interactions exceed position resolution
- Finding the first interaction point is critical to achieve pointing resolution
- In addition Compton reconstruction may be used to reject background

A large number of configurations

Topology	Intrinsic	2 hit distance > 1 mm	Hit E > 50 keV	both
1-1	7.6%	9.7%	9.7%	12.3%
1-2	20.8%	24.4%	28.0%	31.6%
1-3	12.6%	13.1%	12.5%	12.0%
1-4	4.9%	4.4%	2.2%	1.8%
2-2	14.1%	15.0%	20.2%	20.3%
2-3	17.3%	16.3%	18.1%	15.5%
2-4	6.7%	5.5%	3.2%	2.3%
3-3	5.3%	4.4%	4.0%	2.9%
3-4	4.0%	2.9%	1.4%	0.9%
4-4	0.8%	0.5%	0.1%	0.1%

No need to investigate higher order topological configurations

Compton reconstruction algorithm

- Build every possible interaction sequence using the information on both detector sides
 - Reject the sequence that lead to Line of Response outside the sample volume
- For each sequence
 - Calculate two angles at every possible scattering point
 - From energy deposited
 - From geometry
 - Assess the errors of both methods (energy always dominate errors)
 - Calculate a chi2 quantity comparing the energy and geometrical angle
 - Select the sequence with lowest chi2

Algorithm evaluation by simulations

- Simulate using GEANT
- Use NEMA phantom scaled for micro-PET

- <u>1</u>-2 and 2-2 have the worst signal to background
 - Some irresolvable ambiguities
- Most of the background is due to selecting wrong first point
 - Random and scatter very much suppressed due to very good energy and time resolution

Liquid Xenon promise excellent image quality

Summary

- PET is continuously evolving
 - Current trend is towards ever smaller crystals and an ever larger number of channels
- TRIUMF is developing alternate solution
 - Liquid Xenon
 - Extremely promising technology yet complex
 - Reading out monolithic LSO crystal with wavelength shifting bars
 - Hopefully validate the concept before end of 2010
 - Development of GEANT simulations

Collaboration

• Liquid Xenon collaboration

A. Miceli, P-A. Amaudruz , J.Glister, L. Kurchaninov, F. Retière, T.J. Ruth (TRIUMF)

F. Benard (BCCA)

D.A. Bryman, C. Clements, A.J. Stoessl, V. Sossi, H. Zhu (UBC)

• Scintillator detectors

C. Lim, F. Retière, P. Gumplinger, C. Ohlman (TRIUMF)

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

Backup

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

> Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Corresponding electrical circuit

Parameters for T2K MPPC

$$\begin{split} & \mathsf{C}_{\mathsf{pixel}} = 90 \text{ fF} \\ & \mathsf{R}_{\mathsf{quench}} = 150 \text{ k}\Omega \\ & \mathsf{C}_{\mathsf{quench}} \sim 4 \text{ fF (parasitic)} \\ & \mathsf{C}_{\mathsf{line}} \sim 10 \text{ pF (parasitic)} \\ & \mathsf{I}_{\mathsf{avalanche}} = (\mathsf{V}_{\mathsf{operation}} - \mathsf{V}_{\mathsf{breakdown}}) \text{ / } \mathsf{R}_{\mathsf{quench}} \sim 5\text{-}10 \text{ }\mu\mathsf{A} \\ & {}^{44}\mathsf{Q}_{\mathsf{avalanche}} = (\mathsf{V}_{\mathsf{operation}} - \mathsf{V}_{\mathsf{breakdown}}) \text{ } \mathsf{C}_{\mathsf{pixel}} \sim \end{split}$$

MPPC signal

Charge distribution of 9 INGRID channels

M. Otani (Kyoto). PD09 talk