韓国におけるDSSDの開発

ソウル大学所属

2012年7月17日@KEK

Contents

- Introduction
- DSSD sensor
- Test of DSSD
- Summary

E07 experiment @ J-PARC and DSSD

(from nakawaza-san's slide)

10³ (E373) ==> 10⁴ Ξ-stops

 $\begin{array}{l} \Lambda - \Lambda \text{ Interaction,} \\ \text{H-dibaryon,} \\ \Xi - \text{Nucleus Interaction,} \\ \text{Inside Neutron Stars (} \text{Quark-star?}) \end{array}$

<==> 3-dimensional Nuclear chart

Experimental Setup

Target ~ DSSD (x2) ~ Emulsion

We aim to set Silicon detectors close to the emulsion plate !

DSSD sensor

DSSD building

- By Double Silicon Strip Detector(DSSD), we can detect X-Y position with one circuit board.
- We are now collaborating with Prof.Hwanbae Park in Kyungbook university to produce DSSD

Detector

- Layout
- Sensor Cost
 - -- Masking : total ~30,000,000 won
 - -- 6" Wafer (x 18) : 3,000,000 won
 - -- processing cost : ~15,000,000 won

~350万円

- APV25 chip & APVDAQ VME module
- Assembly configuration by REPIC

Design of AC-coupled DSSD

From Dr. Kah's slide

AC-coupled SSSD (시제품 사진들)

From Dr. Kah's slide

Dimensions of the AC-DSSD

Dimensions	n-side	p-side	
Sensor size	73620 μm x 37760 μm		
Strip length	71630 μm	35770 μm	
Strip width	20 µm	40 µm	
Number of strips	512	1024	
AC pad	256 μm x 72 μm	256 μm x 72 μm	
DC pad	136 µm x 36 µm	98 μm x 48 μm	
Biasing pad	240 μm x 100 μm		
Guard-ring pad	240 μm x 100 μm		

Designed values	n-side	p-side
Biasing resistance	8.8 MΩ	8.8 MΩ
Coupling capacitance	247 pF/strip or 123 pF/strip	247 pF/strip or 123 pF/strip

Wafer design

By Kha Dongha kah@knu.ac.kr

p-side

n-side

73620 μm

DSSD sensor produce

dicing

sensors

By Korean venture company (SENS)

DSSD leak current - estimate

V-I graph

Dep. voltage ~80 V – most are useless

DSSD leak current - estimate

Sensors 2A (1B,6B) may be used

Capatitance

Sensors 2A (& 1B) could be used

APV25 chip

- Analogue pipeline chip for readout of Silicon detectors developed by CMS
- Handle 128 channels
- •Consists of CR-RC shaper (τ:50nsec), amplifier, pipeline (192cells), multiplexer
- Input : Clock, Trigger
 Output : bi-directional current (multiplexed)

Readout Module

- "APVDAQ" VME module developed by Belle group
- 128 ch multiplexed signals are transferred by 30 m category 7 LAN cable

(yellow cable in the right picture)

 Readout by FADC on the board (10bit, 40MHz sampling)

Data acquisition with sampling mode

APV25 chip has a function of data sampling

By fitting the data points , we can know peaking time

We can exclude accidental hits by timing !

Raw Data (sample)

Raw Data from a APV25 chip which contains 128 ch's information

SSD

-- Each chip has 128 ch of pre-amp and shaper and use serial transfer by multiplexer

If the beam spot size is a few cm (ϕ) , SSD can work under 10 MHz .

Test of DSSD

Comparison of Pedestal distribution

P側読み出し時の"信号"イベント

信号と思われるイベントは現在のところ単なるfluctuation

まとめ

- ・韓国・慶北大学と共同してDSSDセンサーを開発した。
- ・データの読み出しその他はこれまでのところ問題ない。
- ・但しセンサーの評価として、ノイズが大きく(リーク電流が 大きい)、また有意な信号はまだ検出できていない。
- 今後については慶北大学とも連絡をとりながらどうすすめるかを検討中。

6 / 16 at FB19

Results of KEK-E373NAGARA event (1)

H.Takahashi et al., PRL87 (2001) 212502 Track data (lengths, angles and PID)

point	track #	length $[\mu m]$	θ [degree]	ϕ [degree]	
А	#1	8.1 ± 0.3	44.9 ± 2.0	337.5 ± 1.8	double-hypernucleus
	#2	3.2 ± 0.4	57.7 ± 5.2	174.9 ± 2.9	
	#3	88.6 ± 0.5	156.2 ± 0.5	143.0 ± 1.0	
В	#4	9.1 ± 0.3	77.7 ± 1.6	115.9 ± 0.8	single-hypernucleus
	#5	82.1 ± 0.6	122.8 ± 1.0	284.2 ± 0.7	stopped in base
	#6	13697	81.0 ± 0.5	305.5 ± 0.2	π^-
\mathbf{C}	#7	742.6 ± 0.6	138.5 ± 0.2	322.1 ± 0.3	stopped in D-Block
	#8	5868 ± 20	52.2 ± 1.2	123.7 ± 0.7	scattered before stopping

1. Single- Λ (TK#4)

image of TK#7 in D-Block [gave K.E.]

=> Both of charge for TK#7 and #8 should be an unit.

(exceeding Q-value of non-mesonic decay)

=> Single- $\Lambda = He$ nucleus

2. TK#6 was a π by measurement of dE/dx and topology of its end point (with Auger electron).

IV Curve

N側読み出し時の"信号"イベント

Data Suppression

DAQ trigger accept rate ~ 20 Hz (4SSDs)

~ 1Khz @ J-PARC K1.8 beamline

 Most of data is null : a few hits within 768 ch

Discard the null data before readout

Last year, we developed this data suppression system, And test it at RCNP experiments first time

DSSDの測定の様子

・DSSDの読み出し面に対し てシンチを配置して宇宙線 及び線源によるコインシデ ンストリガーを生成

ただしバイアスはGNDをその
 他から切り離した

DSSDの下に線源(Sr90)を設置

読み出しAPVチップの領域

