先端加速器推進部  
 活動報告
 
[最新の活動報告] [2016-2015] [2014-2013] [2012-2011] [2010-2009]
 
   
 
   
 
測定器開発室(2017年2月)
最近のSilicon-On-Insulator(SOI)ピクセル検出器周りのトピックを紹介する。

[Fermilabでのビーム実験]
SOI検出器は厚い空乏層を実現できることからまずX線応用が広がったが、当初からの目的である素粒子実験の崩壊点検出器としても低物質量・高位置分解能・高機能検出器として優れた特徴を持つ。これらの特徴を実証するためフェルミ国立研究所の高エネルギー陽子ビームを使った実験を現在行っている。昨年12月に筑波大グループと共に実験に臨んだ際は残念ながら加速器の故障で実験を行なえなかったが、1月半ばからの再チャレンジでは大量のデータを取ることができている。データ解析はこれからだが、世界初の1ミクロンを切る分解能を目指している。

[温度制御付きセミオート・プローバ]
半導体の各種特性を理解するためには、温度を変化させながら、大量のデータを集め解析することが重要だが、これまではKEKにそのような装置がなかった。今回、-65℃から200℃まで温度変えることの出来るセミオート・プローバを先端計測実験棟のクリーンルーム内に導入することとなった。2月中には周辺工事も終わり、3月からは温度を変えながらウエハー内の多数の素子特性を自動的に測定できるようになる予定である。

図 1. Fermilabのビームラインで実験準備をしている様子。

図 2. 温度制御付きセミオート・プローバ。

測定器開発室(2017年1月)
  測定器開発室では、サブナノ~ナノ秒の発光寿命で30keV以上の高エネルギーX線領域の光子に対しても高い検出効率を有する高速シンチレータの開発を行っている。シンチレータは放射線検出媒体として形状・大きさが比較的自由であり、検出効率や立体角を確保しやすい特徴がある。重元素を含むシンチレータであればMeV領域のガンマ線光子の検出だけでなく、高エネルギーX線領域の光子検出にとっても1mm以下の薄いシンチレータで大きな検出効率が期待され、多チャンネルでも小型化できるなど検出器の高機能化につながる。さらに発光寿命がナノ秒以下の高速シンチレータであれば、ナノ秒幅パルス出力によって毎秒107を超えるような高計数率測定も可能となる。
  最近の成果として、重元素のハフニウム酸化物ナノ粒子を多く含むプラスチックシンチレータ(PLS)の製作について報告する。2ナノ秒程度の減衰時間で高速発光するPLS中に重元素酸化物をナノ粒子のまま分散させることによって、シンチレーション光がシンチレータ内部で透過しやすいまま重元素の重量比を上げることを狙うものである。分散しやすいように有機分子で表面修飾した状態で重元素酸化物ナノ粒子(径~5ナノメートル)を製作することが重要である。そのため超臨界水熱合成法を使った。超臨界水は臨界点374℃、22.1 MPaを超えた状態の水で無極性になっており、無極性な有機溶媒と混ざりやすく反応性も高い。この性質を利用して粒子の合成と同時に有機修飾する。図1のような方法で有機表面修飾されたHfO2ナノ粒子を製作した。:1)Hf(OH)4を水に加え、有機修飾剤としてフェニルプロピオン酸(PPA)を加える。2)水の亜臨界条件(30 MPa, 反応温度: 300℃)で10分間反応させる。3)合成後、トルエンを用いて回収、乾燥させて有機層中のナノ粒子を得る。
  実際に製作されたシンチレータの写真を図2に示す。直径3mm、厚さ約1mm、ハフニウム10重量%を含有する。溶媒はポリスチレン、蛍光体はb-PBDを使った。このシンチレータの側面より放射光X線ビーム(エネルギー:60.0keV)を入射してSi-APDを受光素子とする高速検出器で特性を評価したところ、市販の鉛5重量%添加PLSと比較して検出効率は同程度であったが、時間分解能は市販PLSを上回る0.33ナノ秒(半値幅)を得た。ナノ粒子による効果が寄与したと考えている。今後、合成法の改良、他の重元素添加などの研究を行う。なお、本研究は東北大学・工・応用化学・浅井研究室との共同研究として進めている。

 


図1


図2

 
このページは測定器開発室で更新作業をしております。